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Abstract

In this paper, we investigate the resilience of alternative electric grid configurations by adopting

a stylized approach based on graph theory, probabilistic analysis, and simulation. We consider

two alternative classes of electricity network topology: binary trees and rectangular lattices.

For each topology, we derive the probabilities that customers located at various nodes in the

network will continue to have power following a disaster, depending on the locations of resources

(e.g., generators, storage units) in the network. Then, these probabilities are incorporated into

the problem of optimally placing resources throughout the network. This is a cost-benefit

problem that weighs the benefits of placing resources closer to customers – that is, pursuing

a distributed resilience strategy – against the higher total cost of deploying a greater number

of smaller resource units. Our analytical and numerical results thus shed light on the general

circumstances in which centralized or distributed resilience strategies are preferable. While

optimal resource placements depend on various assumptions, such as the probability that power

lines fail and the strength of economies of scale, we find that distributed resilience strategies

are more often preferred in the binary tree topology than in the rectangular lattice topology.

Rectangular lattices feature greater redundancy in terms of paths between nodes in the network,

enabling the system to be fairly resilient even with centralized resources.
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1. Introduction

Ensuring the reliable provision of electricity is essential for the smooth operation of critical infrastructure

sectors such as healthcare, water, defense, and communications (Mishra and Anderson, 2021) and more

generally to ensure economic stability and security. Extreme weather events such as hurricanes, snow and ice

storms, and heavy thunderstorms pose significant threats to electric transmission and distribution networks

and have been responsible for major outages in the recent past. Therefore, increasing the resilience of the

electricity network to withstand such extreme events is imperative. In recent years there have been significant

disruptions to the electricity networks associated with Superstorm Sandy and Hurricanes Harvey, Irma, and

Maria (Wender et al., 2017; Poudel et al., 2019; Sharma and Chen, 2020; Watson and Etemadi, 2020). In

2017 in Texas, due to Hurricane Harvey, the total number of electric customer outages stood at 2 million, and

it took almost two weeks to completely restore power to all customers. In 2017 and 2018, the total damages

due to these extreme events were about $3.3 and $3.0 billion, respectively (Chen et al., 2019). The latest in

this line of natural disasters was Winter Storm Uri, which caused substantial economic losses of about $130

billion in Texas in February 2021 (Busby et al., 2021). In the aftermath of Uri, more than 4 million people

were left without electricity for almost a week, and among the 69% of Texans who experienced an outage,

the average outage duration was 42 hours (Kemabonta, 2021). The total annual cost of power interruptions

in the U.S. is about $44 billion (LaCommare et al., 2018). This situation has led to an increased focus on

the resilience of the electric grid.

Resilience refers to the ability of the electricity system to recover quickly after a major disaster and

adapt its structure and operational procedures to mitigate the impact of future extreme events. Presidential

Policy Directive (PPD) 21 defines grid resilience as “the ability to prepare and plan for, absorb, recover

from, or more successfully adapt to actual or potential adverse events (Alderson et al., 2015; Bessani et al.,

2019).” Resilience can be divided into two categories: operational and infrastructure resilience (Panteli and

Mancarella, 2015). Operational resilience relates to the loss of load and expected demand not being met

in the event of a grid outage due to an extreme event. Infrastructure resilience relates to the damages to

electric infrastructure caused by the extreme event. Reliability and resilience are two important electricity

system properties that describe the ability of the system to satisfy demand. In general, reliability guards

against high-probability, low-impact events such as electric system faults, while resilience guards against

low-probability, high-impact events (i.e., extreme events) such as hurricanes, snow storms, and so on. These

extreme events have the potential to disrupt electricity service on large spatial and temporal scales, with

severe consequences extending from financial losses to losses of lives. So, designing electricity systems to be

resilient against extreme weather threats is a critical objective of planners and a topic of great interest to

researchers.
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Publications on critical infrastructure and network resilience have increased significantly over the last

few years, which can be attributed to the increasing frequency of natural disasters (Curt and Tacnet, 2018).

This literature has empirically studied the impacts of historical extreme weather events on the power sector.

Other contributions use optimization to analyze how to design and operate electricity systems to achieve

greater resilience. However, a common limitation of these studies is that they rely on computational models

that are highly data-intensive and produce results that are difficult to generalize, as they are specific to one

particular case study parameterization. To address this issue, we analyze stylized models to provide broader

insights into resilience enhancement strategies.

Our objective is to investigate the resilience of alternative electric grid configurations by adopting a

stylized approach based on graph theory, probabilistic analysis, and simulation. We consider two alternative

classes of electricity network topology: binary trees and rectangular lattices. We choose these two topolo-

gies because they resemble real-world electric grids and represent opposite extremes in terms of network

redundancy. A binary tree has no redundancy since there is only one path from the root node to each

leaf. In contrast, the rectangular lattice has much greater redundancy, as there are multiple paths between

any two nodes. For each topology, we derive the probability that a customer located at various nodes in

the network will continue to have power following a disaster, depending on the locations of resources (e.g.,

generators, storage units) in the network. Then, these probabilities are incorporated into the problem of

optimally placing resources throughout the network. This is a cost-benefit problem that weighs the benefits

of placing resources closer to customers – that is, pursuing a distributed resilience strategy – against the

higher total cost of deploying a greater number of smaller resource units. Our analytical and numerical

results thus shed light on the general circumstances in which centralized or distributed resilience strategies

are preferable. While optimal resource placements depend on various assumptions, such as the probability

that power lines fail and the strength of economies of scale, we find that distributed resilience strategies

are more often preferred in the binary tree topology than in the rectangular lattice topology. Rectangular

lattices feature greater redundancy in terms of paths between nodes in the network, enabling the system to

be fairly resilient even with centralized resources.

The remainder of this paper is organized as follows. In Section 2, we provide a detailed review of the

most relevant literature. Our analysis of the binary tree in Section 3 combines several theoretical results with

numerical examples. Section 4 describes our numerical analysis of the rectangular lattice, which employs

simulation to compute probabilities. In Section 5, we compare optimal resource placements in the binary tree

and rectangular lattice topologies. Section 6 concludes by summarizing our most significant contributions

and identifying directions for future research.
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2. Literature review

The most relevant literature on electricity resilience can be divided into data-intensive computational

models with a specific case study focus, and conceptual studies which discuss high-level ideas and policies

for improving resilience.

2.1. Computational models for electric grid resilience

Optimization models are widely employed to study decision-making for enhancing grid resilience. Ghare-

hveran et al. (2022) proposed a two-stage mixed-integer quadratic programming model for a microgrid

framework with solar panels, micro-turbines, and mobile batteries to make an electricity system more resilient

against extreme events. Investment decisions are considered in the first stage, and in the second stage,

operational variables are chosen to improve the resilience of the system. Ashrafi et al. (2021) proposed

a multi-objective optimization approach based on a genetic algorithm and an epsilon constraint method

to enhance grid resilience in a smart grid environment with distributed energy storage during extreme

weather conditions. The study’s objectives include minimizing the distribution network operational cost

and the penalty cost for energy not supplied, and maximizing benefits for the energy suppliers. Zhang

et al. (2021) used a combinatorial network configuration and double-loop optimization methodology to

derive quick recovery methods for post-disaster networks, supplying the largest amount of electricity on

a fixed topology (IEEE 188-Bus System). Here, the objective is to effectively reorganize the system to

supply power to a topology with the largest demand requirement. Hardening the electric grid is considered

essential for improving resilience. Ma et al. (2016) presented a tri-level optimization problem to minimize

load shedding by making electric grid hardening investments to enhance distribution system resilience during

extreme events. Ma et al. (2018) proposed a two-stage stochastic mixed-integer programming problem to

develop a resilience-oriented design technique for enhancing the distribution grid’s resilience during extreme

events. The problem focuses on hardening the distribution lines, deploying distributed generators, and

reducing system operation and repair costs. Alderson et al. (2015) proposed operational models to assess

infrastructure system operational resilience, identify critical vulnerabilities, and advise policymakers on

appropriate investments for improving resilience.

Electricity supply interruptions can severely impact operations at critical facilities and businesses such

as airports, hospitals, offices, and hotels. So, developing models to explore potential resilience strategies for

these facilities is crucial. Masrur et al. (2021) proposed a mixed-integer linear programming (MILP) model

for the techno-economic assessment of grid-connected microgrids with renewable energy sources, batteries,

and diesel generators to improve grid resilience. As a case study, the model is applied to study Logan

3



International Airport in Boston, Massachusetts. Liu et al. (2021) proposed an optimization model to improve

the resilience of hospitals during unpredicted electricity outages with a hybrid microgrid consisting of wind

turbines, diesel generators, and energy storage units. The outages are generated randomly over different

days of the year, and a resilience index is computed based on the unmet electricity demand. Sepúlveda-Mora

and Hegedus (2022) proposed a hybrid microgrid with solar photovoltaics (PV), wind, and battery storage

to increase the resilience of commercial buildings in three locations with different consumption types using

the Homer Grid software. The study considers three locations: Tucson, Arizona; Sioux Falls, South Dakota;

and Wilmington, Delaware. The results show that the proposed hybrid microgrid could withstand a three-

day power outage in all three locations. Laws et al. (2018) performed a techno-economic assessment of the

value of resilience achieved via solar PV and battery storage using an MILP model. The model is tested

on a large hotel in Anaheim, California. Ishiwata and Yokomatsu (2018) formulated a dynamic stochastic

macroeconomic model to quantitatively examine the economic impacts of disasters on developing countries,

using Pakistan as the case study.

Setting up a microgrid with different generation options is viewed as an effective strategy for enhancing

grid resilience. So, identifying ideal locations for developing microgrids is imperative for managing technical

and economic constraints. Related to our study of optimal resource placement, Aros-Vera et al. (2021)

proposed a facility location model to evaluate the potential of microgrids to increase the resilience of critical

infrastructure (CI) networks. The model’s objective is to find the ideal locations for microgrid installation

by minimizing the weighted distance of population centers to the CI while considering system capacity. To

improve resilience during a large-scale grid disturbance, Kizito et al. (2020) formulated a facility location

coverage problem to optimize the number of renewable distributed generators in a utility-based microgrid,

considering budgetary constraints. The model’s objective is to minimize the operation and maintenance

costs, investment costs, and the distance traveled for electricity distribution.

Many researchers have developed metrics for measuring an electricity system’s resilience. In extreme

weather conditions, to analyze the resilience of electric grids with integrated microgrids, Liu et al. (2016)

proposed four different resilience indices: loss of load probability, line outage, expected demand not met, and

difficulty level of grid recovery. They use a mesh grid approach to model the extreme events and a Markov

chain to analyze the electric grid’s state transitions. The resilience indices are calculated using Monte

Carlo simulation. To quantify the operational resilience of an electric grid, Poudel et al. (2019) proposed

a probabilistic metric based on Conditional Value-at-Risk (CVaR). The proposed metric is evaluated using

a simulation approach on an IEEE 123-bus test system. With many metrics developed to measure system

resilience, testing the validity of the metrics is critical. To test the validity of resilience metrics against

its conceptual framework, Najarian and Lim (2019) proposed a methodology based on experimental design

4



methods and statistical analysis techniques.

Researchers have developed different approaches to evaluate the resilience of transmission and distribu-

tion networks. Galvan et al. (2020) assessed the resilience of the distribution grid to natural disasters with

networked microgrids and distributed energy resources based on the Resilience Analysis Process (RAP). In

this study, resilience analysis focuses on low-probability, high-consequence events, and the metrics focus on

the event’s impact on humans. Trakas et al. (2019) developed a severity risk index based on probabilistic

risk by considering system operating conditions, degraded system performance, and spatial and temporal

evolution of the extreme event to assess its impact on the resilience of electric transmission networks.

Gallaher et al. (2021) employed spatial econometrics to investigate the impact of tree trimming operations

on improving electric grid resilience in Connecticut, using an outage events dataset from 2009 to 2015 from

New England’s largest utility company, Eversource Energy.

As described above, the literature includes many examples of optimization models designed to determine

grid resilience enhancement strategies. These optimization models are highly data-intensive and produce

results that are specific to one case study parameterization. In contrast, our study leverages stylized models,

theoretical analysis, and simulation in order to obtain more general insights into grid resilience decision-

making. Our study is related to Kizito et al. (2020) and Aros-Vera et al. (2021) in that we focus on decisions

about where to place resources within electricity networks.

2.2. Conceptual studies on electric grid resilience

Expert perspectives impart new knowledge and play a vital role in guiding strategies for resilience

enhancement. Brown and Soni (2019) studied the concept of improving electric grid resilience with electric

vehicle integration using the Delphi approach. Experts from the U.S. Department of Energy’s Electricity Ad-

visory Committee were surveyed, and the results were compared to the existing literature, policy paradigms,

and the concerned stakeholders. Chang et al. (2014) proposed an approach based on expert judgments

to characterize a community’s infrastructure vulnerability and resilience against disasters. They test their

proposed framework on a case study of earthquake and flood risks in metro Vancouver, Canada. Due to the

increasing frequency of natural disasters and associated grid disturbances in the U.S., the federal government

has introduced several programs for community investments to improve electricity resilience. Zamuda and

Ressler (2020) highlight the list of federal programs and funding opportunities available to enhance electricity

resilience during extreme weather conditions.

Since improving electricity resilience involves different stakeholders, appropriately weighing each criterion

for decision-making deserves specific attention. Based on three resilience dimensions – “resist,” “restabilize,”
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and “recover” – Siskos and Burgherr (2022) proposed a multicriteria decision support framework to evaluate

the electricity supply resilience of 35 European countries using their performance on 17 evaluation criteria.

The evaluation criteria are based on electricity generation mix, supply, availability and outage, and the

country’s political and economic stability. The crisis management cycle can be conceptualized as having four

phases: preparedness, response, recovery, and mitigation. Understanding the different phases in the crisis

management cycle and preparing suitable methods for addressing each phase requires significant attention.

Forssén and Mäki (2016) present different conceptual methods to address grid resilience during an extreme

event based on the four phases of the crisis management cycle for the Finnish electricity system. In conceptual

studies, the expert opinions are based on a specific set of evaluation criteria considering the different phases

in the extreme event scenario.

From our point of view, there is a lack of theoretical work on electric grid resilience that is capable of

yielding broad, generalizable insights into resilience decision-making. In this study, we develop stylized

models of electricity resilience in grids with two types of regular network topology: binary trees and

rectangular lattices. We study the problem of optimally placing resources in these electric grids, considering

both the costs and benefits of pursuing a distributed resilience strategy with a greater number of smaller

resource units located closer to customers. The sections that follow include a combination of theoretical and

numerical analysis.

3. Resilience analysis for a binary tree topology

Each of our analyses begins with a regular electric grid topology (e.g., binary tree, rectangular lattice)

and assumptions about the failure probabilities of infrastructure components (e.g., the probability that any

one line is destroyed). We consider different placements of resources, such as power plants or batteries,

throughout the network. For the binary tree, we derive the probabilities that customers located at various

nodes in the network continue to have power following a disaster, depending on the locations of resources

(e.g., generators, storage units) in the network. Then, these probabilities are incorporated into the problem of

optimally placing resources throughout the network. This is a cost-benefit problem that weighs the benefits

of placing resources closer to customers — that is, pursuing a distributed resilience strategy — against the

higher total cost of deploying a greater number of smaller resource units.

We now outline our approach for the binary tree topology. Suppose we have a perfect binary tree T of

height h ≥ 0 (where h = 0 represents a single-node binary tree) as represented in Figure 1a. In Figure 1a,

R and C denote the resource and customer nodes, respectively. In our model we will always assume that

the customer nodes are the leaves of the binary tree. Furthermore, we assume that power always flows from

a resource node to a customer node along the most direct route (i.e., along the unique shortest path from

6



R to C). In addition, suppose that the probability that any given edge in the tree succeeds in transferring

power is p and the probability that the edge fails to transfer power (e.g., due to extreme weather or some

other adverse event) is 1− p. We assume that the edge failures are mutually independent. Given this setup,

we face the problem of identifying the layer g ∈ {0, 1, 2, . . . , h} at which to place resources to provide power

to the customers located at the leaf nodes. To place resources at layer g in T means to establish each of the

2g leaves of the rooted height g sub-tree of T as a resource node. Since power may only flow downstream

from the resource nodes to the customer nodes, this creates 2g identical sub-trees of height h− g, each with

a resource at its root node and 2h−g customers at its leaf nodes. Examples of such scenarios are depicted in

Figure 1. We also assume that customers all have the same constant power demand, and therefore the total

resource capacity is the same regardless of the resource placement g.

3.1. Expected number of customers with power in a binary tree

For a given binary tree network with parameters h, g, and p, we now compute the expected number of

customers (i.e., leaf nodes) with power. Fortunately, we can exploit the symmetric and recursive nature of

our problem along with the linearity of expectation.

Theorem 1. Consider a perfect binary tree of height h, and suppose we place 2g resources in layer g ≤ h.

Let p be the probability that power is transferred along any given edge, and assume that edge failures are

mutually independent. Then, the expected number of customers with power is given by 2hph−g.

Proof. To begin, note that there are 2g independent sub-trees of height h− g. Let the number of leaves with

power in each sub-tree be denoted N1, N2, . . . , N2g , respectively. Then, the expected number of leaves with

power in the entire tree is given by

E [N1 +N2 + . . .+N2g ] = 2g E[N1],

where we used the fact that the Ni are identically distributed. Now consider one of these single resource

sub-trees. It has height h− g and thus 2h−g leaves. Let X1, X2, . . . , X2h−g be i.i.d. indicator variables, with

each indicating whether the corresponding leaf has power. Then, we can write

E[N1] = E [X1 +X2 + . . .+X2h−g ] = 2h−gE[X1] = 2h−gP[X1 = 1].

For the penultimate step, we need to evaluate P[X1 = 1]. In a single resource sub-tree, the only way a

particular leaf gets power is if each of the lines on the unique path between it and the root succeeds in

transferring power. In our case, this implies that P[X1 = 1] = ph−g.
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Figure 1. Binary tree topology

Thus, E[N1] = (2p)h−g and

E [N1 +N2 + . . .+N2g ] = 2g E[N1]

= 2g(2p)h−g

= 2h ph−g,
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as desired.

3.2. Optimal resource placement in a binary tree

Having derived an exact expression for the expected number of leaves with power in a perfect binary

tree network of height h and rooted perfect resource sub-tree of depth g, the next step is to find the optimal

resource placement in the tree. For the purposes of this paper, we model a decision-maker whose alternatives

are the different layers in the network in which resources can be placed. Their goal is to identify layer

g∗ ∈ {0, 1, . . . , h} such that the expected net benefit is maximized. To motivate why different placements

matter, consider placing a single resource at layer g = 0. For any 0 < p < 1, the expected number of

customer nodes with power is minimized, but we only have to install a single (large) resource. On the other

hand, placing resources at g = h ensures that every customer node will have power but the planner must

install 2h (smaller) resources, which may be very costly. Fundamentally, we are interested in finding the

ideal balance between placing resources closer to customers, which improves resilience, and placing (fewer

but larger) resources closer to the root node, which is less costly due to economies of scale. We now begin

to formulate our model.

Let B be the benefit in dollars of a single customer receiving power. We introduce the random variable

Ng that represents the number of customers with power given a choice to install the resources at layer g.

The cost of placing resources in a given layer can be broken down as follows:

Cost = (# of resources placed)× (power capacity of each resource)×

(cost per unit of power at the given capacity)

= n×
(
d

n

)
× ℓ

(
d

n

)
= d× ℓ

(
d

n

)
,

where n is the number of resources placed, d is the total power demand, and ℓ(x) is a function denoting

the cost per unit power capacity for a resource with power capacity x. In order to account for economies

of scale, ℓ(x) should be decreasing in x, as this implies that larger resources are cheaper to deploy on a

per-unit-capacity basis. We use the function ℓ(x) = Ax−m + C where C is the cost per unit of power for

an infinitely large resource, A is a scaling parameter, and m > 0 reflects the strength of economies of scale.

More precisely, as m increases, the cost per unit of power decreases for a given capacity. If we take the mixed

partial derivative of ℓ(·) with respect to capacity x and then our economies of scale parameter m, we find

∂2ℓ

∂x∂m
= Ax−(m+1) (m log(x)− 1) ,
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which is strictly negative for 0 < x ≤ e1/m. To ensure that a higher value of m can be straightforwardly

interpreted as signifying stronger economies of scale, we restrict the capacity x to the interval [0,1].

In our numerical analyses we will only consider values of m ∈ (0, 1]; over this interval, larger values of m

correspond to stronger economies of scale. In the case of our binary tree topology, we have n = 2g, d = 1 (we

assume that each customer has an identical fraction of the total unit demand), and therefore the capacity of

each resource in layer g is 2−g. Altogether, the total cost of placing resources in layer g is
(
A (2−g)

−m
+ C

)
.

The notation for our optimization model is listed in Table 1. The general form of the optimization problem

is therefore:

Table 1. Notation for the binary tree analysis

Sets and Indices

h The height of the binary tree network

2h Total number of customers (i.e., leaf nodes) in the network

Variables

g Layer at which resources are placed
Ng The random variable denoting the number of customers with power given resources in layer g
n Number of resources placed

Parameters

B Monetary benefit per customer receiving power
A Cost function scaling parameter
C Theoretical lower bound on resource cost per unit capacity
m A positive scaling parameter that controls the strength of economies of scale
d Total power demand

max
g∈{0,1...,h}

E[(Benefit)g − (Cost)g] = max
g∈{0,1...,h}

B E [Ng]−
(
A
(
2−g
)−m

+ C
)

= max
g∈{0,1...,h}

B 2hph−g − (A2gm + C)

= −C + 2h max
g∈{0,1...,h}

Bph−g −A2gm−h.

Based on the above, if we want to solve for the optimal resource placement layer g∗, it suffices to

solve the optimization problem

max
g∈{0,1...,h}

Bph−g −A2gm−h. (1)
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3.3. Analytical solution for optimal resource placement in a binary tree

Determining the optimal resource layer in (1) involves solving over the set of integers {0, . . . , h}.

We begin by initially solving (1) using the continuous relaxation of the problem,

max
g∈[0,h]

f(g) = Bph−g −A2gm−h, (2)

and then use this to obtain the optimal integer solution. Before deriving the optimal solution to

the continuous optimization problem (2), we need the following lemma.

Lemma 1. The function f(g) = Bph−g − A2gm−h has a unique critical point on R if 2mp ̸= 1.

Furthermore, this critical point is a unique global maximum if and only if 2mp > 1 and a unique

global minimum if and only if 2mp < 1.

Proof. The critical points of f are the solutions to the equation f ′(g) = 0, which can also be

expressed as

B(2p)h log
(
1
p

)
A log 2m

= (2mp)g. (3)

If 2mp ̸= 1, then the right-hand side of (3) is a strictly monotonic continuous function of g with

domain R and range R+ and the left-hand side is a positive constant. It follows that there exists a

unique solution g∗ and thus a unique critical point.

Solving for g∗, we obtain

g∗ =

log

(
B(2p)h log

(
1
p

)
A log 2m

)
log 2mp

. (4)

Next, we show that g∗ is a unique global maximum if f ′′(g∗) < 0. The proof that g∗ is a unique

global minimum when f ′′(g∗) > 0 is analogous. Suppose f ′′(g∗) < 0 and g∗ is not a unique global

maximum. Then there must exist some g′ ∈ R such that f(g∗) ≤ f(g′). WLOG let g′ > g∗. We

will now use Taylor’s Theorem to argue that f(g∗ + ϵ) < f(g∗) for sufficiently small ϵ > 0. By

Taylor’s Theorem, since f(g) is a twice-continuously differentiable function, we have that

f(g∗ + ϵ) = f(g∗) + ϵf ′(g∗) +
ϵ2

2
f ′′(g∗ + tϵ) (5)
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for some t ∈ (0, 1). Noting that f ′(g∗) = 0, we can rearrange (5) to obtain

f(g∗ + ϵ)− f(g∗) =
ϵ2

2
f ′′(g∗ + α) (6)

for some α ∈ (0, ϵ). Now, since f ′′(g) is a continuous function and f ′′(g∗) < 0, we can let ϵ be

sufficiently small such that the right-hand side of (6) is negative, implying that f(g) decreases in a

sufficiently small neighborhood of g∗.

Therefore, since f is a continuous function, it follows that there must be some g ∈ (g∗, g′) such

that f(g∗) = f(g) by the intermediate value theorem. But Rolle’s theorem then implies that there

is a point ĝ on the interval (g∗, g) at which f ′(ĝ) = 0, contradicting the fact that g∗ is the unique

critical point of f . Therefore, there does not exist a g′ such that f(g′) ≥ f(g∗), implying that g∗ is

the unique global maximizer of f(g), as desired.

Lastly, we need to show that f ′′(g∗) < 0 if and only if 2mp > 1 (the proof of f ′′(g∗) > 0 if

and only if 2mp < 1 follows the same logic). Setting f ′′(g∗) < 0 and rearranging terms, we get the

inequality

B(2p)h log(p)2

A log(2m)2
< (2mp)g

∗
.

Taking the logarithm of both sides and plugging in (4) for g∗ yields the inequality

log

(
B(2p)h log(p)2

A log(2m)2

)
< log

B(2p)h log
(
1
p

)
A log 2m

 .

Since the logarithm is a strictly increasing function we can drop the logarithms and cancel positive

like terms to obtain

log(p)2

log(2m)2
<

log
(
1
p

)
log 2m

.

One last round of rearrangement and cancellation of positive terms gives the condition 0 < log(2mp),

which is true if and only if 2mp > 1. As all of the logical steps above are reversible, we conclude

that f ′′(g∗) < 0 if and only if 2mp > 1. Analogous arguments yield that f ′′(g∗) > 0 if and only if

2mp < 1, completing the proof.
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Before moving on to our main results, we examine how our expression for g∗ is affected by our

choice of parameters. We can easily see from (4) that increasing the value of B, the monetary

benefit of a single customer receiving power, causes g∗ to increase. That is, as the benefit of each

customer receiving power increases, the optimal resource placement layer is closer to the customers,

in order to increase the expected number of customers with power. On the other hand, if we increase

A, which reflects the cost per unit of resource capacity, we see that g∗ will decrease. The intuitive

explanation is that as the cost of investing in resources increases, placing more resources becomes

more costly and thus it is advantageous to place resources more centrally.

If we take the partial derivative of g∗ with respect to h, we find that ∂g∗

∂h = log 2p
log(2mp) , which can

be positive or negative depending on the values of p and m. In our case, if we assume that g∗ is

feasible and a global maximum (g∗ ∈ [0, h] and 2mp > 1), then ∂g∗

∂h > 0 if and only if p > 1/2 while

∂g∗

∂h < 0 if and only if p < 1/2. This implies that in a sufficiently reliable network with optimal

resource layer g∗ ∈ (0, h), increasing the size of the network will cause the optimal resource layer

to increase (i.e., move further away from the root node).

What is more interesting is examining the effects of p and m on g∗. Let us first look at the effects

of p on g∗. Intuitively, we would expect that as p increases, signifying a more reliable network, the

optimal resource placement layer would decrease. However, we find that the optimal resource layer

can increase or decrease with p depending on the parameter values. If we again assume that g∗ is

feasible and a global maximum, then ∂g∗

∂p is negative if and only if (h−g∗) log 1
p < 1. Based on this,

we can see that once a network is sufficiently reliable, increasing its reliability causes the optimal

resource layer to shift towards the root, which is in line with our intuition. However, for networks

where p is sufficiently small, this condition will not hold and increasing p will actually cause the

optimal resource layer to move outward toward the customers.

Lastly, we examine the relationship between g∗ and m, the economies of scale parameter.

Intuitively, we would expect that as economies of scale get stronger we would see g∗ decrease,

and indeed that is what we see here. If we once more assume that g∗ is feasible and optimal,

then we obtain ∂g∗

∂m = −(1+g∗ log 2m)
m log(2mp) < 0, which implies that as economies of scale get stronger, the

optimal resource layer should move inward toward the root node (i.e., become more centralized).

With Lemma 1 and the observations about g∗ established, we may now state the main results
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regarding our continuous optimization problem.

Theorem 2. Let g∗ =
log

(
B(2p)h log( 1

p)
A log 2m

)
log 2mp .

1. If 2mp > 1 and 0 ≤ g∗ ≤ h, then g∗ is the solution to the continuous optimization problem

(2).

2. If 2mp ≤ 1 or g∗ ̸∈ [0, h], then the solution to the continuous optimization problem is g = 0

or g = h. In particular, the solution is g = 0 if

p ≥

(
B −A2−h

(
1− 2hm

)
B

)1/h

(7)

and g = h otherwise.

Proof. The first claim follows directly from Lemma 1 since g∗ is a feasible solution to problem (2)

and thus also the unique maximum on [0, h].

To prove the second statement, we first show that if 2mp ≤ 1, then the optimal solutions to the

continuous optimization problem are at g = 0 or g = h. We have two cases to consider. If 2mp = 1,

then the RHS of (3) is a constant in g and f ′(g) = 0 has either zero or infinitely many solutions. If

it has zero solutions, then f(g) is a strictly monotonic function and the optimal resource placement

must occur at g = 0 or g = h. On the other hand, if f ′(g) = 0 has infinitely many solutions, then

f(g) is a constant function and thus g = 0 and g = h are optimal resource placements.

In the second case, if 2mp < 1, then by Lemma 1, g∗ exists and is a global minimum. The

candidates for the maximum of f(g) on [0, h] are the set of critical points and the endpoints of

the interval. Since g∗ is the unique critical point and global minimum, the only candidates for the

maximum on [0, h] are g = 0 and g = h.

Next, suppose that 2mp > 1 but g∗ /∈ [0, h]. Since the potential candidates for maxima are the

endpoints and critical points on the interval, and the interval does not contain the unique critical

point, then the only candidates for maxima on [0, h] are g = 0 and g = h.

Lastly, given that the optimal resource placement is one of the two endpoints, if we take the
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objective function in (2), evaluate it at g = 0 and g = h, set the g = 0 expression greater than or

equal to the g = h expression, and then isolate p, we arrive at (7).

With this result for the continuous optimization problem established, we note that the solutions

to the continuous optimization problem (2) are not necessarily solutions to the original discrete

optimization problem (1). Fortunately, the continuous optimization problem helps us easily identify

solutions restricted to the integers.

Theorem 3. Let g∗ =
log

(
B(2p)h log( 1

p)
A log 2m

)
log 2mp .

1. If 2mp > 1 and 0 ≤ g∗ ≤ h, then any g ∈ argmax {f(⌊g∗⌋), f(⌈g∗⌉)} is an optimal solution to

the discrete optimization problem (1).

2. If 2mp ≤ 1 or g∗ ̸∈ [0, h], then the optimal solution to the discrete optimization problem (1)

is either g = 0 or g = h. The solution is g = 0 if

p ≥

(
B −A2−h

(
1− 2hm

)
B

)1/h

and g = h otherwise.

Proof. 1. Suppose that 2mp > 1 and g∗ ∈ [0, h]. If g∗ is integer-valued then we are done.

Otherwise, since g∗ is the unique global maximum of f(g) and unique critical point, f(g) is

strictly monotonically decreasing on either side of g∗. This implies that ⌊g∗⌋ and ⌈g∗⌉ are the

only candidates for an optimal integer solution, and we simply choose the one that produces

the larger objective value.

2. This follows immediately from case 2 of Theorem 2 since the two possible optimal resource

placements are already integer-valued.

3.4. Numerical analysis of a binary tree

To illustrate optimal resource placements in binary trees, we perform a numerical analysis of

two different scenarios. The first scenario features weaker economies of scale (WEOS) in resource
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investment (specifically, we set m = 0.1), while the second scenario features stronger economies of

scale (SEOS) (m = 1). All other model parameters are assigned the same values in both scenarios.

We assume that the binary tree height is h = 5, the monetary benefit per customer receiving power

is B = 25, the scaling parameter is A = 20, and the theoretical lower bound on cost per unit

resource capacity is C = 2.

Figure 2 and Figure 3 show the expected net benefit (i.e., the objective function) as a function

of the resource placement layer – depicted as a continuous function – for scenarios with weaker and

stronger economies of scale, respectively. The sub-figures within each figure represent different

settings for p, the probability that an edge succeeds in transmitting power. In the WEOS scenario,

for all p, the optimal resource placement is at the final layer, where each customer is given an

individual, distributed resource. In the SEOS scenario (m = 1), when p = 0.10 and p = 0.50, the

optimal resource placement is at the final layer. In the SEOS scenario for p = 0.80 (Figure 3c)

and p = 0.90 (Figure 3d), the objective function exhibits an interior maximum in between layers

3 and 4 (for p = 0.80) and 2 and 3 (for p = 0.90), with optimal integer solutions at layer 4 and

layer 3, respectively. When p = 0.95, the optimal resource placement in the SEOS scenario is at

layer 2, as shown in Figure 3e. When p = 0.99, placing a single large resource at the root node

maximizes the expected net benefit in SEOS scenario (Figure 3f).

To conclude, we see that a completely distributed architecture is optimal in the WEOS scenario

for all instances of line reliability (p). In the SEOS scenario, a completely centralized architecture

is optimal when power lines are extremely reliable (p = 0.99), resources are placed in intermediate

layers when reliability (p) is between 0.80 and 0.95, and investing in customer-sited distributed

resources is optimal when line reliability is p = 0.50 or lower.

4. Resilience analysis for a rectangular lattice topology

In the binary tree topology, there is an obvious choice for which nodes should be customer

nodes, whereas in the rectangular lattice topology, which nodes should be considered “leaves” is

not so obvious. We make the assumption that the boundary nodes of the lattice are customers, as

shown in Figure 4 where customer nodes are marked in orange. Similar to the binary tree analysis,

our initial goal is to determine the probability that a customer located at each boundary node will
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(a) p = 0.10

 

 

(b) p = 0.50

 

(c) p = 0.80

 

(d) p = 0.90
 

(e) p = 0.95

 

(f) p = 0.99

Figure 2. Expected net benefit as a function of the resource layer with weaker economies of scale
(h = 5, A = 20, C = 2, B = 25, m = 0.1)

remain connected to a resource (i.e., continue to have electricity) after a disaster, given alternative

resource placements. In the binary tree, the alternative resource placements were the layers in the

tree. In this analysis of a rectangular lattice, we focus on a 17 × 17 lattice, since this lattice size

allows us to consider various “regular” placements of resources within the grid and generally makes

our analysis as analogous as possible to that of the binary tree.

4.1. Expected number of customers with power in a rectangular lattice

In the 17 × 17 lattice, if a single large resource is placed in the center of the grid (represented

by the green box in Figure 4), then the lattice can be divided into four identical 9× 9 quadrants

(with some overlap, as we will address below). If resources are placed in the center of each 9 × 9

quadrant (represented by the yellow boxes in Figure 4), then each quadrant can be subdivided
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(a) p = 0.10

 

(b) p = 0.50
 

(c) p = 0.80

 

(d) p = 0.90
 

(e) p = 0.95

 

(f) p = 0.99

Figure 3. Expected net benefit as a function of the resource layer with stronger economies of scale
(h = 5, A = 20, C = 2, B = 25, m = 1)

into four 5× 5 quadrants. Furthermore, if resources are placed in the center of each 5× 5 quadrant

(represented by the blue boxes in Figure 4), then each quadrant can be subdivided into four 3× 3

quadrants. Note that only 12 blue boxes appear in Figure 4, rather than the 16 that would be

required to evenly cover the whole 17× 17 lattice. This is because the customers only exist at the

boundary nodes of the 17 × 17 lattice and they can thus be served by the 12 resources depicted

in blue; we do not include resources in the interior of the grid as they are not needed to serve the

customers. Similarly, the next alternative resource placement is represented by the 28 magenta

boxes in Figure 4, and the final, most distributed resource placement would be to invest in 64

resource units with one located at each customer node (the orange nodes in the figure).

We assume that power only flows “outward” from each resource toward the customers that it

serves. For example, for the single green resource in Figure 4 to serve customers in the upper
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Figure 4. Rectangular lattice topology with four resource placement alternatives

right 9× 9 quadrant of the lattice (i.e., customers at a1 through a17), power can only flow up or to

the right. Our initial goal is to determine the probability that each customer will have power after

a disaster, given the various possible resource placements. As before, we assume that each network

edge is able to transmit power with probability p and that line failures are mutually independent.

Unlike in the binary tree, where there was only one route from each resource to each customer,

in the rectangular lattice there are often numerous routes connecting a resource to a customer.

Due to the combinatorial nature of the lattice topology, deriving analytical expressions for the

probabilities of having power is intractable. Therefore, we turn to numerical simulation to estimate

these probabilities. It is important to note that if we estimate these probabilities for every node in

one 9× 9 quadrant (e.g., the upper right quadrant for the alternative with a single resource in the
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center), then we have all the estimates we need for all customer nodes and any resource placement.

This is because the smaller quadrants associated with more distributed resource placements can

be viewed as subsets of the largest (9 × 9) quadrant, and the probabilities of powering nodes are

symmetric across the quadrants with a given resource placement.

Our Monte Carlo simulation of the 9 × 9 quadrant entails 50,000 samples, where each sample

is generated by “flipping coins” to establish whether each power line remains operational (with

probability p) or not (probability 1 − p). Once a sample has been generated, we employ a depth-

first search (DFS) algorithm to determine whether there is a viable path for power to flow from the

resource to each node in the quadrant. By repeating this 50,000 times, we can divide the number

of samples in which a node remains connected to a resource by 50,000 to obtain our estimate of

the probability that this node will have access to electricity.

Figure 5 shows the results of our Monte Carlo simulation with p = 0.90 and the alternative

resource placements that include 1, 4, 12, and 28 resources (in this order, from more centralized

to more distributed). In Figure 4, these four resource placements are represented by the green,

yellow, blue, and magenta boxes, respectively. In each subfigure of Figure 5, the probabilities of

customers having power are the probabilities in the top row and right-most column (e.g., row 8

and column 8 in Figure 5a). We observe that the probabilities are lowest for the customers on

the vertical and horizontal axes. For each of these customers, there is only a single path from the

resource to the customer, so in order for them to have power, every line along the path must remain

operational. In contrast, the probabilities are highest in the top right corner of each quadrant. Even

though these customers are furthest away from the resource, this is more than offset by the greater

number of paths connecting them to the resource. While power has to travel further to reach them,

they benefit from the redundancy inherent in the rectangular lattice topology. Lastly, note that

Figure 5 demonstrates why we only needed to simulate the 9 × 9 quadrant. For example, the

customer node in row 2 and column 0 of the 3 × 3 quadrant in Figure 5c is equivalent to the

(non-customer) node in the same row and column of the 9× 9 quadrant in Figure 5a.

Before moving on to analyze optimal resource placements in a rectangular lattice, it is helpful

to briefly address the issue of overlap between quadrants. For example, consider the 1-resource

placement (green box) and the customer located at node a1 at the top of Figure 4. This node
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Figure 5. Simulated probabilities for alternative resource placements when p = 0.90

could be considered part of the upper right or upper left quadrant. In either case the probability

that it will have power is the same, so we can arbitrarily assign it to one quadrant or the other.

Next, consider the same node a1 but with the 4-resource placement (yellow boxes). This node could

be served by the resource located below it and to the left, or by the resource located below it and to

the right. Again, regardless of which resource serves this customer, the probability of having power

is the same. Therefore, we can arbitrarily assign it to one resource or the other. Importantly, note

that we assume that each customer is only served by one resource. Therefore, whichever of the two

resources the customer at a1 is assigned to, it must remain connected to that specific resource in

order to have access to electricity.

4.2. Optimal resource placement in a rectangular lattice

As in the binary tree analysis, the optimal resource placement in the rectangular lattice is

the one that maximizes the expected net benefit, where benefits are associated with customers

that have access to power and costs are associated with deploying resources in the grid. Whereas
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we approached the binary tree problem by solving a continuous optimization problem (and then

using the optimal continuous solution to establish an optimal integer solution), for the rectangular

lattice we establish expressions for the expected net benefit resulting from each possible resource

placement. The notation used in these expressions is summarized in Table 2. For the probabilities

written as Z
(k)
i , the superscript (k) refers to the resource placement (with k resources) and the

subscript i refers to the customer node (see Figure 5 for how these are numbered). There are five

alternative resource placements – those with 1, 4, 12, 28, and 64 resources – and their expected net

benefits are respectively:

1 resource:

4B

(
Z

(1)
1 + 2

8∑
i=2

Z
(1)
i + Z

(1)
9

)
− d

(
A

(
d

1

)−m

+ C

)
(8)

4 resources:

4B

(
2Z

(4)
1 + 4

4∑
i=2

Z
(4)
i + 2Z

(4)
5

)
− d

(
A

(
d

4

)−m

+ C

)
(9)

12 resources:

4B
(
4Z

(12)
1 + 8Z

(12)
2 + 4Z

(12)
3

)
− d

(
A

(
d

12

)−m

+ C

)
(10)

28 resources:

8B
(
4Z

(28)
1 + 4Z

(28)
2

)
− d

(
A

(
d

28

)−m

+ C

)
(11)

64 resources:

64B − d

(
A

(
d

64

)−m

+ C

)
. (12)

Table 2. Notation for the rectangular lattice analysis

Variables

Z Experimental probabilities of customer nodes having power

Parameters

p Probability that an edge succeeds in power transfer
B Monetary benefit per customer receiving power
d Total power demand
A Cost function scaling parameter
C Theoretical lower bound on resource cost per unit capacity
m A positive parameter that controls the strength of economies of scale
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Each expression consists of two terms: the expected benefit of customers having power and the

cost of resource placement. The cost term is based on the same cost function that we used for the

binary tree analysis, which incorporates economies of scale controlled by the m parameter. The

argument of the cost function for each resource placement is the total power demand d divided by

the number of resources, which is the power capacity of each resource. To demonstrate how we

constructed the expected benefit terms, consider the 1-resource placement in (8) and refer to its

visualization in Figure 5a. Since the top row and right-most column are symmetric, this quadrant

includes two customers whose probabilities of having power are Z
(1)
i for each i ∈ {2, ..., 8}. This

quadrant includes one customer whose probability is Z
(1)
1 and one whose probability is Z

(1)
9 (to

avoid double counting customers in the overlaps, assign one of the corner customers to the next

quadrant so that there are four total customers in the 17×17 lattice with probability Z
(1)
9 ). Finally,

the expected benefit term is constructed by multiplying the sum of these customer probabilities

along the quadrant boundary by 4 (because the quadrants are symmetric) and by B, the benefit of

a customer having power.

4.3. Numerical analysis of a rectangular lattice

For the rectangular lattice, we consider two scenarios and numerically determine the optimal

resource placement in each one by evaluating the expressions for the expected net benefits in (8)-

(12). The two scenarios assume different values for the economies of scale parameter m. The

first scenario features WEOS in resource investment (m = 0.1), while the second scenario features

SEOS (m = 1). Within each scenario, we explore how the expected net benefit of each alternative

resource placement varies with the probability of line success in transmitting power p. In both

scenarios, we assume that each customer has an identical fraction of the total unit demand (d = 1),

the monetary benefit per customer receiving power is B = 25, the cost function scaling parameter

is A = 20, and the theoretical lower bound on cost per unit resource capacity is C = 2. Results

from these scenarios are shown in Figure 6.

In the WEOS scenario with m = 0.1 (Figure 6a), for p = 0.90 and below, the 64-resource (most

distributed) placement is optimal. However, when the probability of line success in power transfer

is p = 1, the 1-resource (most centralized) placement is the optimal solution. In the SEOS scenario
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with m = 1 (Figure 6b), for p = 0.50 and below, the 64-resource (most distributed) placement

is the optimal solution. In this setting for m, the 12-resource placement is the optimal solution

when p is between 0.50 and 0.70, while the 1-resource (most centralized) placement is optimal when

p ≥ 0.80.

When the electric grid has perfect reliability in the rectangular lattice topology, the 1-resource

(most centralized) placement is always the optimal solution. When p ≤ 0.5, for the SEOS scenario,

the 64-resource (most distributed) placement is the preferred alternative.

 

(a) m = 0.1

 

(b) m = 1

Figure 6. Expected net benefit when B = 25, A = 20, C = 2 and for different m

5. Comparison of binary tree and rectangular lattice

After analyzing the binary tree and rectangular lattice individually, in this section, we compare

them to examine how the type of grid topology affects the choice between more centralized and

more distributed resource placements. In the 17×17 rectangular lattice, irrespective of the resource

placement, there are 64 customers located at the boundary nodes of the lattice. There are five

alternative resource placements – those with 1, 4, 12, 28, and 64 resources. The binary tree that

is most closely analogous to the 17× 17 lattice is the tree with height h = 6, as it also features 64

customers located at the leaf nodes. One difference is that this binary tree offers seven resource

placement alternatives with 1, 2, 4, 8, 16, 32, and 64 resources (the number of nodes in each layer).

Nevertheless, since the 17× 17 rectangular lattice and the binary tree with height h = 6 both serve

64 customers, we can compare their optimal resource placements to elucidate how the grid topology

influences this decision.
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To perform this comparison, we numerically analyze both topologies under two scenarios:

WEOS and SEOS. In both scenarios, we set B = 25, A = 20, and C = 2. For both scenarios, we

consider three different values for the probability that each line is able to transmit power: medium

(p = 0.6), high (p = 0.9), and perfect reliability (p = 1). The WEOS and SEOS scenarios are

distinguished by their values of the economies of scale parameter m, with m = 0.1 in the WEOS

scenario and m = 1 in the SEOS scenario. Results for the two scenarios are presented in Figure 7

and Figure 8, respectively. To plot the binary tree and lattice results on the same axes, the

horizontal axes represent the number of resources in a placement.

In the WEOS scenarios with medium p (Figure 7a) and high p (Figure 7b), the 64-resource

(most distributed) placements are the optimal solutions for both topologies. When p = 1 and the

grid is perfectly reliable (Figure 7c), the 1-resource placements are the best alternatives for both

the binary tree and rectangular lattice topologies, as expected.

In the SEOS scenario with medium p (Figure 8a), the 12-resource placement is the optimal

solution for the rectangular lattice topology. However, for the binary tree topology, the optimal

solution features either 32 or 64 resources, as these placements yield the same expected net

benefit. The relationship between the number of resources deployed and the expected net benefit is

completely different depending on whether the grid has a rectangular lattice or binary tree topology.

In the SEOS scenario with high p = 0.90 (Figure 8b), the 1-resource placement is the optimal

solution for the lattice topology. However, for the binary tree, the 8-resource placement is optimal.

Once again, whenever the grid is perfectly reliable (p = 1.0) (Figure 8c), the 1-resource (most

centralized) placements are optimal, as expected.

Examining the results presented in Figure 7 and Figure 8 in their totality, we see that

centralized resource placements are more commonly optimal for a rectangular lattice topology

while distributed resource placements are more commonly optimal for a binary tree topology. This

finding can be explained by the greater path redundancy present in a rectangular lattice, whereas

the binary tree only features a single path from each resource to each customer node. The lattice’s

greater redundancy makes power line failures less detrimental, which favors placing fewer (but

larger) resources in more central grid locations to exploit economies of scale and reduce resource

costs.
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(a) B = 25, A = 20, C = 2,m = 0.1, p = 0.60

 

(b) B = 25, A = 20, C = 2,m = 0.1, p = 0.90

 

(c) B = 25, A = 20, C = 2,m = 0.1, p = 1

Figure 7. Expected net benefit for binary tree and rectangular lattice topologies with different p:
weak economies of scale (WEOS) scenario

6. Conclusions

In this paper, we investigated the resilience of alternative electric grid configurations by adopting

a stylized approach based on graph theory, probabilistic analysis, and simulation. We focused on

the cost-benefit problem of optimally locating resources (e.g., generators, batteries) within electric

grids where power line failures occur probabilistically. We designed the model to explore the

tradeoff between resilience and cost considerations, where deploying a greater number of smaller

resources closer to customers (i.e., pursuing a distributed resilience strategy) enhances resilience

but increases cost due to economies of scale that make smaller resources more expensive per unit

capacity. We considered the optimal resource placement problem for two types of grid topology:

binary trees and rectangular lattices. For a binary tree, we derived the optimal resource placement

analytically through a series of theoretical results, while for the rectangular lattice, we studied the

problem numerically with probabilities estimated via simulation experiments. Lastly, we compared
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(a) B = 25, A = 20, C = 2,m = 1, p = 0.60
 

(b) B = 25, A = 20, C = 2,m = 1, p = 0.90

 

(c) B = 25, A = 20, C = 2,m = 1, p = 1

Figure 8. Expected net benefit for binary tree and rectangular lattice topologies with different p:
strong economies of scale (SEOS) scenario

numerical results for a lattice and tree with the same number of customers to examine how the

form of the network topology influences the optimal resource placement decision.

The preceding sections presented a number of detailed analytical and numerical results, and

here we conclude by summarizing the most interesting high-level insights that our analysis revealed.

Most importantly, we observed that the topology of the electric grid (in our case, whether it is a

binary tree or a rectangular lattice) exerts a strong influence on whether centralized or distributed

resource deployments maximize net benefits. While the optimal resource placement is sensitive to

the parameters of a specific application, binary trees tend to favor more distributed placements

where resources are closer to customers while rectangular lattices tend to favor more centralized

placements where customers are served by fewer, but larger, resources. This key difference between

the two topologies should be viewed as a consequence of their vastly different degrees of redundancy.

In a binary tree there is one unique path from each resource to each customer, so as the path length
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increases, electricity access becomes more vulnerable to power line failures. Placing resources closer

to customers is a natural strategy for circumventing the vulnerability of the grid. In contrast, in

a rectangular lattice there are often many paths from resources to customers. The failure of any

particular power line is less threatening in this setting with greater path redundancy, so centralized

resource placements that reduce cost due to economies of scale are more likely to be optimal. For

binary tree networks specifically, our theoretical results identified the interesting possibility that a

decrease in power line reliability does not necessarily lead to an optimal resource placement that is

closer to the customers. The logic is that a decrease in our p parameter also reduces the magnitude

of the expected benefit term in the objective relative to the cost term, and cost becoming relatively

more important pushes the optimal solution toward a more centralized placement that leverages

economies of scale.

All of our results should be interpreted in light of the limitations of our stylized modeling

approach, which does not attempt to represent real-world electric grids in a detailed manner. In

the real world, most electric grids are not perfectly regular binary trees and rectangular lattices

like the topologies that we studied in this paper. While we assumed that power line failures occur

independently from each other, in reality, they are likely spatially dependent in that an extreme

weather event would affect certain parts of the grid more than others. We considered as having

access to power any customer who remained connected to a resource. This approach neglects

capacity constraints of resources and lines that could limit the numbers of customers that they

serve even if they remain connected. While these limitations are important to keep in mind, they

were necessary to enable our more theoretical and general style of analysis, which we view as a

valuable complement to the many computational studies of grid resilience in the existing literature.

This study suggests several promising directions for future research. Researchers could in-

vestigate the possibility of an analytical solution to the optimal resource placement problem on

a rectangular lattice, which we explored numerically. It would also be valuable to extend our

analysis to other network topologies that arise in real-world electric grids, beyond binary trees

and rectangular lattices. In addition, future research could employ more detailed, computational

power system models to test whether the insights we have derived on centralized versus distributed

resource deployment hold in these more realistic grid representations.
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