

## Subsurface H<sub>2</sub> Storage in Texas: Opportunities and Challenges

Dr. Lorena Moscardelli Principal Investigator Iorena.moscardelli@beg.utexas.edu

@moscardellil







# Natural Hydrogen& Geoengineered Hydrogen



#### Hand (2023) Science Article





Hydrogen Seepage (?) Coastal North Carolina

### Leveraging Gulf Coast Assets for the Emerging Clean H<sub>2</sub> Economy in TX



### Leveraging Gulf Coast Assets for the Emerging Clean H<sub>2</sub> Economy in TX



## Leveraging Permian Basin Assets for the Emerging Clean H<sub>2</sub> Economy in TX



Bureau of

Economic

Geology

GeoH<sub>2</sub>

|      | Production Tax Credit                                             |                                                               |  |
|------|-------------------------------------------------------------------|---------------------------------------------------------------|--|
|      | Carbon Intensity<br>(kg CO <sub>2</sub> e per kg H <sub>2</sub> ) | Max Hydrogen Production Tax Credit<br>(\$/kg H <sub>2</sub> ) |  |
| U    | 4-2.5                                                             | \$0.60                                                        |  |
|      | 2.5-1.5                                                           | \$0.75                                                        |  |
|      | 1.5-0.45                                                          | \$1.00                                                        |  |
|      | 0.45-0                                                            | \$3.00                                                        |  |
| Silo |                                                                   |                                                               |  |



# The Permian Basin of West Texas has several favorable conditions to develop a hydrogen economy

#### Hydrogen Stora World's largest underground hydrogen storage project

There are geographic limitations to  $H_2$  storage in salt caverns



Mitsubishi Power Americas and Magnum Development are set to begin construction on a 300 GWh underground storage facility in the US state of Utah. It will consist of two caverns with capacities of 150 GWh, to store hydrogen generated by an adjacent 840 MW hydrogen-capable gas turbine combined cycle power plant.

#### AUGUST 4, 2022 EMILIANO BELLINI

ENERGY STORAGE HIGHLIGHTS HYDROGEN TECHNOLOGY AND R&D UTILITY SCALE STORAGE UNITED STATES



### **Advantages and Disadvantages**

**TABLE 20.2** Metrics of Hydrogen Caverns in the United States and the United Kingdom [10]

|                                               | Teesside (UK)        | Clemens<br>Dome, Texas<br>(USA)          | Moss Bluff,<br>Texas (USA) | Spindletop,<br>Texas (USA)   |
|-----------------------------------------------|----------------------|------------------------------------------|----------------------------|------------------------------|
| Salt formation                                | Bedded salt          | Salt dome                                | Salt dome                  | Salt dome                    |
| Operator                                      | Sabic<br>Petrochem.  | Chevron<br>Phillips<br>Chemical<br>Comp. | Praxair                    | Air Liquide                  |
| Commissioned                                  | 1972                 | 1986                                     | 2007                       | information<br>not available |
| Geometrical volume/m <sup>3</sup>             | 210 000              | 580 000                                  | 566 000                    | 906 000                      |
| Mean cavern<br>depth/m                        | 365                  | 1 000                                    | 1 200                      | 1 340                        |
| Pressure<br>range/10 <sup>5</sup> Pa<br>(bar) | 45                   | 70–137                                   | 55–152                     | 68–202                       |
| Net energy<br>stored/GW h                     | 27                   | 81                                       | 123                        | 274                          |
| Amount of H <sub>2</sub> /t                   | 810                  | 2 400                                    | 3 690                      | 8 230                        |
| Net volume/m <sup>3</sup><br>(std)            | $9.12 \times 10^{6}$ | $27.3 \times 10^{6}$                     | $41.5 \times 10^{6}$       | $92.6 \times 10^{6}$         |

Lin et al. (2023)





### Porous Media Offers the Best Option for H<sub>2</sub> Storage In terms of geography and storage volume

#### However ... Abiotic & Microbial Hydrogen Consumption Dissolution in Brine Minera Caprock Trapping **Viscous Fingering &** Gravity Brine Adsorption on Clay Channelling Override Residual Trapping Abiotic & Microbial Hydrogen Generation Gas Capillary Pressure Hydrogen Pressure – Temperature Fluctuations **Geomechanical Failure Cushion Gas Negative Joule Thomson** Mineral Dissolution/ Precipitation Heat Generation During Natural Hydrogen Injection

There are many factors that make  $H_2$  storage in porous media more challenging but in the longer term this will likely be the best option in areas where salt formations are absent.

Ren (2021)



Hassanpouryouzband et al. (2021)

# We need geoscientists and engineers!









