Fuel Cells and Electrolyzers: Challenges and Opportunities

Arumugam Manthiram

Materials Science and Engineering &Texas Materials Institute Walker Department of Mechanical Engineering McKetta Department of Chemical Engineering The University of Texas at Austin

Fuel Cell Parameters

 $E^{\circ} = \Delta G^{\circ} / nF = (-471,000 \text{ J/mol}) / (4) (96,487 \text{ C/mol}) = 1.23 \text{ J/C or V}$

Fuel cell efficiency

Efficiency = $\Delta G^0 / \Delta H^0 = (471,000 \text{ J/mol}) / (572,000 \text{ J/mol}) = 0.83 = 83\%$

Types of Fuel Cells

Fuel cell type	Anode reaction	Cathode reaction	Temp. (°C)		
Phosphoric acid fuel cell (PAFC)	$H_2 \rightarrow 2H^+ + 2e^-$	$0.5O_2 + 2H^+ + 2e^- \rightarrow H_2O$	200		
Proton exchange membrane fuel cell (PEMFC)	$H_2 \rightarrow 2H^+ + 2e^-$	$0.5O_2 + 2H^+ + 2e^- \rightarrow H_2O$	~ 90		
Direct methanol fuel cell (DMFC)	$CH_3OH + H_2O \rightarrow CO_2 + 6H^+ + 6e^-$	$1.5O_2 + 6H^+ + 6e^- \rightarrow 3H_2O$	~ 60		
Direct ethanol fuel cells (DEFC)	$C_2H_5OH + 3H_2O \rightarrow 2CO_2 + 12H^+ + 12e^-$	$3O_2 + 12H^+ + 12e^- \rightarrow 6H_2O$	~ 60		
Alkaline fuel cells (AFC)	$H_2 + 2OH^- \rightarrow 2H_2O + 2e^-$	$0.5O_2 + H_2O + 2e^- \rightarrow 2OH^-$	~ 90		
Molten carbonate fuel cells (MCFC)	$H_2 + CO_3^{2-} \rightarrow H_2O + CO_2 + 2e^{-}$	$0.5O_2 + CO_2 + 2e^- \rightarrow CO_3^{2-}$	~ 600		
Solid oxide fuel cell (SOFC)	$H_2 + O^{2-} \rightarrow H_2O + 2e^{-}$	$0.5O_2 + 2e^- \rightarrow O^{2-}$	> 500		
University of Texas at Austin					

Challenges of Fuel Cell Technologies

- Commercialization is hampered by high cost, durability, and operability challenges
- Linked to severe materials challenges and system issues

Nafion Membrane

$$- \begin{bmatrix} CF_2 & -CF_2 \end{bmatrix}_{\mathbf{X}} \begin{bmatrix} CF & -CF_2 \end{bmatrix}_{\mathbf{Y}} \\ \begin{bmatrix} OCF_2 & CF_2 \end{bmatrix}_{\mathbf{Z}} \\ \begin{bmatrix} OCF_2 & CF_2 \end{bmatrix}_{\mathbf{Z}} \\ CF_3 \end{bmatrix} O(CF_2)_n SO_3 H$$

Polarization Losses and CO Coverage on ON Pt

∆G = - n F E E = 1.23 V

T. R. Ralph and M. P. Hogarth, *Platinum Metals Reviews* **46**, 3 (2002)

Langmuir-type adsorption of hydrogen and carbon monoxide on a smooth platinum surface as a function of temperature.

Low-cost Non-platinum Catalysts

 $2 M + O_2 \rightarrow 2 MO$ $2 [MO + 2 H^+ + 2 e^- \rightarrow M + H_2O]$ $O_2 + 4 H^+ + 4 e^- \rightarrow 2 H_2O$

 $\Delta G^{\circ} \text{ (first step)} (1)$ $E^{\circ}_{MO} \text{ (following step)} (2)$ $E^{\circ} = 1.23 \text{ V} \text{ (overall reaction)} (3)$

J. L. Fernandez, V. Ragnuveer, A. Manthiram, and A. J. Bard, J. Am. Chem. Soc. **127**, 13100 (2005) V. Raghuveer, A. Manthiram, and A. J. Bard, J. Phys. Chem. B **109**, 22909 (2005) University of Texas at Austin

Membranes Based on Acid-base Interactions

Y.-Z. Fu, A. Manthiram, and M. Guiver, *Electrochemistry Communications* 8, 1386 (2006)

- Benzimidazole: Can act as a bridge to transport proton under anhydrous conditions (Grotthuss-type hopping & vehicle-type mechanisms)
- > 100 °C operation: Can eliminate humidification systems & suppress CO poisoning
- N-heterocycles: Insertion into SPEEK channels suppresses methanol crossover
- PEEK and PSf: Low cost industrial polymers, compatible aromatic polymers, excellent mechanical properties and thermal stability

Blend Membranes Based on Different Polymers

Performance of Blend Membranes in DMFC

W. Li, A. Manthiram, and M. Guiver, *Journal of Membrane Science* **362**, 289 (2010) W. Li, Y.-Z. Fu, A. Manthiram, and M. Guiver, *Journal of Electrochemical Society* **156**, B258 (2009)

- All blend membranes show better performance than plain SPEEK due to suppressed methanol crossover and increased proton conductivity
- Blend membrane consisting of PSf-BTraz shows the best performance

Performance of Blend Membranes in DMFC

Membranes	OCV (V)	Maximum power density (mW/cm²)	Methanol crossover current density (mA/cm ²)	Proton Conductivity at 65 °C, 100% R.H. (mS/cm)
Nafion-115	0.63	59	122	144
Nafion-117	0.71	49	86	143
SPEEK	0.69	64	115	69
SPEEK / PSf-ABIm	0.71	95	95	93
SPEEK / PSf-NBIm	0.73	84	87	87
SPEEK / PSf-Blm	0.72	73	91	79
SPEEK / PSf-PImd	0.74	73	77	73
SPEEK / PSf-BTraz	0.72	101	87	96

W. Li, A. Manthiram, and M. Guiver, Journal of Membrane Science 362, 289 (2010)

- Blend membranes offer better performance than Nafion at a much reduced cost (~ 20 %) due to low methanol crossover – two times higher power density than Nafion
- Potential to operate with high concentration of methanol increase in energy density

Ionic Cluster Size in Various Blend membranes

Intensity (a.u.)

- SPEEK and blend membranes show smaller cluster size than Nafion
- Blend membranes show larger cluster size compared to plain SPEEK, suggesting the insertion of heterocycle groups into the channels formed by the sulfonic *acid groups*

W. Li, A. Manthiram, and M. Guiver, Journal of Membrane Science 362, 289 (2010)

Solid Oxide Fuel Cell Materials

Electrolytes

Fluorite $Zr_{1-x}Y_xO_{2-0.5x}$ (YSZ): operates > 800 °C Fluorite $Ce_{1-x}Gd_xO_{2-0.5x}$ (GDC): operates at ~ 500 °C, electronic cond. at > 600 °C Perovskite $La_{1-x}Sr_xGa_{1-x}Mg_xO_{3-x}$ (LSGM): operates at 600 – 800 °C

Anodes

 $\begin{array}{l} Zr_{1-x}Y_{x}O_{2-0.5x} + \text{Ni metal (cermet)} \\ YSZ \text{ provides oxide-ion conduction and Ni provides electronic conduction} \\ \text{Ni is poisoned by carbon deposition from hydrocarbon fuel and sulfur impurities} \\ La_{1-x}Sr_{x}VO_{3-\delta}, \ Sr_{2}MoMO_{6-\delta} \ (M = Mg \ or \ Mn) \end{array}$

Cathodes

Perovskite $La_{1-x}Sr_{x}MnO_{3}$ (LSM): operates at > 800 °C Perovskite $La_{1-x}Sr_{x}CoO_{3-\delta}$ (LSM): operates at 600 - 800 °C, but large TEC

Interconnects

Perovskite La_{1-x}Sr_xCrO₃

Mixed Conducting ABO_{3-δ} Perovskite Oxides

Low-TEC Cobalt Oxides without Spin-state Transition

Suppression of Carbon Deposition on Ni Anode

