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ABSTRACT:

Stochastic process models of commodity prices are 
important inputs in energy investment evaluation 
and planning problems.  In this work, we focus 
on modeling and forecasting the long-term price 
level, since it is the dominant factor in many such 
applications.  We apply a Kalman filtering method 
with maximum likelihood approach to estimate 
the model parameters for the two-factor Schwartz 
and Smith (2000) process, which decomposes the 
spot price into unobservable factors for forecasting 
the long-term equilibrium level and short-term 
deviation. The method also accommodates aspects 
of both a geometric Brownian motion process and 
a mean-reverting process.  Historical natural gas 
futures data from 1996 to present were analyzed to 
determine the model parameters and we quantified 

the changes in both the drift rate and volatility that 
have resulted from developments in the natural 
gas markets since significant volumes of shale 
gas began to be produced. The parameterized 
model is then used to develop price forecasts with 
uncertainty bounds.  The risk-neutral version of the 
stochastic price model is typically used theory and 
in academic work; however, risk-adjusted models of 
the expected spot price are often used in practice.  
These two approaches are connected by risk premia 
which are unfortunately often difficult to estimate. 
We use an asset pricing model approach to obtain 
improved estimates of the risk premia to facilitate 
development of both risk-neutral and expected spot 
price forecasts. 
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1 | INTRODUCTION

The renewed and enhanced application of 
horizontal drilling and hydraulic fracturing 
technologies to shale reservoirs has dramatically 
changed the US domestic natural gas production 
output during the past decade.  Prior to 2008, it 
was expected that the US would need to import 
large volumes of liquefied natural gas (LNG) to 
make up for an anticipated shortfall in domestic 
production. The International Energy Agency 
(IEA) now projects that the United States will be 
a net exporter of natural gas as soon as 2020.  The 
gas price environment, through its impact on 
investment economics, will undoubtedly be a key 
factor in determining whether such projections are 
accurate or not.  Figures 1 and 2 show the historical 
and future projected impact of shale gas production 
and the resulting realized price, respectively.  The 

fundamental economic relationship between 
supply and demand seems to hold, with the 
increase in production coinciding with a decrease 
in the price index.  

There are several approaches to developing long-
term forecasts for commodity prices, including 
many types of econometric models, equilibrium 
models, and expert survey forecasts.  In this paper, 
we use an approach that is based upon calibrating 
some of the commonly-used stochastic process 
models with data from the commodities markets.  
Schwartz (1997), Schwartz and Smith (2000), 
Manoliu and Tompaidis (2002), and others describe 
how the parameters for these types of process 
models can be obtained with the Kalman filter 
and maximum likelihood estimation, and evaluate 

FIGURE 1:  

US Domestic Natural Gas Production 2007-2040
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the performance of these models for capturing 
the dynamics of futures prices [1-3].  We use this 
approach to calibrate the Schwartz and Smith 
(2000) two-factor stochastic process and then use 
that model to generate forecasts of natural gas 
spot prices. The relationship between futures and 

spot prices in this approach is established within 
the context of a risk-neutral valuation framework, 
where futures prices are equal to the expected 
future spot price under a risk-neutral stochastic 
process [4].   

FIGURE 2:

Natural Gas Price and Production Indices 2007-2012
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2 | TWO-FACTOR STOCHASTIC PROCESS MODEL

For the Schwartz and Smith (2000) two factor 
model, the natural log of the natural gas price at any 
point in time St is expressed as the sum of short-
term deviations χt and a long-term equilibrium 
level ξt, such that ln(St) = χt + ξt.  Assuming the 
short-term deviations follow a mean-reverting 
process and the long-term equilibrium follows 
geometric Brownian motion, the two factor process 
can be summarized as:

(1) 

 

              

(2)

 
where κ is the reversion rate of the deviation to an 
mean value of zero, σx is the volatility of the short 
term deviation, µξ is the drift rate of the long term 
equilibrium level, and σξ is the volatility of the long 
term equilibrium.  The random increments of the 
two standard Brownian motion processes, dzx and 
dzξ , are correlated according to the relationship 
dzχdzξ = ρχξ dt.  

The calibration of the two factor process utilizes 
futures prices, and because futures prices are 
equal to the expected future spot price under a 
risk-neutral stochastic process (Duffie, 1992), it is 
necessary to develop a risk neutral version of the 
two factor process.  This version can also then be 
used to value investments that derive their value 
from the underlying commodity (i.e., natural 
gas in our case), including real options, without 
the requirement of estimating a risk-adjusted 
discount rate.  The modifications to Equations (1) 
and (2) for a risk neutral process involve relatively 
straightforward adjustments to the drift rates of the 

processes for χt and ξt using risk premiums λχ and 
λξ , respectively:

(3)

(4)

where the parameters are defined the same as 
in Equations (1) and (2), except µ✳

ξ is the risk 
neutral drift rate of the long term equilibrium 
level, calculated as µ✳

ξ  = µξ  - λξ and the random 
increments of the two processes, dz✳

χ and dz✳
ξ are 

increments of the risk neutral process.

The expectation and variance of the risk neutral 
process, as shown in Schwartz and Smith (2000) 
are:

(5)

(6)

     

Here, St is lognormally distributed, so that ln(St/S0), 
which is the return prices from period 0 to period 
t, is normally distributed.  Under risk-neutral 
valuation, the futures prices will equal the expected 
spot prices [5].  Therefore the expectation and 
variance, in (5) and (6), can be used to derive the 
following expression for the futures prices:

where FT, 0 is the current (time 0) market price for a 
futures contract with maturity at time T, and

dχt = κ(0 - χt)dt + σχ dzχ

dχt = (0 -κ χt - λχ)dt + σχ dz✳
χ

dξt = µ
✳
ξ dt + σξ dz✳

ξ

Ln(FT, 0) = e-κt χ0 + ξ0 + A(T )

dξt = µξ dt + σξ dzξ

E[ln(St)] = e-κt χ0 + ξ0 - (1 - e-κt) 
λχ

κ   + µ✳
ξt

Var[ln(St)] = (1 - e-2κt)     + σ 2
ξ t + 2(1 - e-κt)     

ρχξ σχ σξσ 2
χ

κ2κ

A(T ) = µ✳
ξT - (1 - e-κt) 

λχ

κ  + 1–2   [(1 - e-2κT)     + σ 2
ξ t + 2(1 - e-κt)          ]ρχξ σχ σξσ 2

χ

κ2κ
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3 | TWO-FACTOR MODEL PARAMETERIZATION 
AND PRICE FORECAST

There are seven parameters required to fully specify 
the model in its basic and risk neutral versions. 
We estimate the values of these parameters using 
a Kalman filtering with maximum likelihood 
estimation. The Kalman filter is a recursive 
procedure for optimally estimating unobserved 
state variables based on observations that depend 
on these state variables [6].  In this case, the Kalman 
filter can be applied to estimate the unobservable 
state variables χt and ξt, making it possible to 
calculate the likelihood of a set of observations 
given a particular set of parameter values.  By 
varying the parameter values and re-running the 
Kalman filter, the value of the parameters that 
maximize the likelihood function can be identified. 
A detailed description of this technique can be 
found in Harvey (1989) [7].

For the Kalman filter, the stochastic process must 
be represented in a state space formulation. This 
representation consists of a transition equation to 
describe the evolution of the state variables over 
time and a measurement equation to relate the 
state variables to the observable data. Schwartz and 
Smith (2000) specify the transition equation for the 
two factor model as:

xt = c + Gxt-1 + ωt,     t = 1, ... , nT

Where nT is the number of time periods,

 xt = [     ] is a 2x1 vector of state variables; 

 c = [         ] is a 2x1 vector and  is the length of 

time steps;   

 G = [            ] is a 2x2 transition matrix;

 ωt is a 2x1 vector of serially uncorrelated 

normally-distributed disturbances, with  

E[ωt] = 0, and
 
                 

  

The corresponding measurement equation is:

yt = dt + F'txt + vt,    t = 1, ... , nT,

where                              is a n x 1 vector of observed 

(log) futures prices for the n maturities T1, T2, ... , Tn, 

               is a n x 1 vector,                    

is a n x 2 matrix, and vt is a n x 1 vector of serially 
uncorrelated normally-distributed disturbances 
(measurement errors) with  

E[vt] = 0 and Cov[vt] = V.

With a state space formulation and a set of 
historically observed futures prices for different 
maturities, the Kalman filter runs recursively 
beginning with a prior distribution of the initial 
values of the state variables (χ0, ξ0).  In addition, 
the terms in the covariance matrix (V) for the 
measurement errors for each of the futures contract 
maturities in the data must also be estimated.  The 
measurement errors can be simplified by making 
the common assumption that they are uncorrelated 
with each other, so that V is a diagonal matrix as in 
Schwartz (1997) and Schwartz and Smith (2000).  
The objective is to maximize the log-likelihood 
function for a joint normal distribution.

Our sample of futures data consisted of 969 weekly 
observations of futures prices at maturities of 1, 
3, 6, 12, 18, 24 and 36 months, as shown in Figure 
3. The time period for these observations is from 
the week of June 6, 1997, the date from which 
all seven contracts above were first continuously 
traded, to the week of January 1, 2016.  We also 
worked with a subset of this data, which included 

χt
ξt

e-κt

0
0
1

0
µξ Δ t

Var[ωt] = Cov[χΔ t, ξΔ t] = [                                                             ].
(1 - e-2κt)

(1 - e-2κt)

(1 - e-2κt)
ρχξ σχ σξ

ρχξ σχ σξσ 2
χ

κ

κ2κ

σ 2
ξ t

yt = [              ]ln(FT, 1)...
ln(FT, n)

dt = [              ]A(T1)...
A(T n)

F't = [              ]e-κT1

...
e-κTn

1
 . ..
1
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366 weekly observations, from the week of January 
2, 2009 through the same end date as the full data 
set.  This subset was selected to correspond with 
the estimated date of the effective beginning of 
the shale gas era, because it coincides with the 
approximate date when natural gas produced 
by hydraulic fracturing started to significantly 
influence market prices. 

The data from both time horizons (from June 1997 

and from January 2009) were analyzed using the 
Kalman filter to maximize the likelihood function 
and produce the parameter estimates reported 
in Table 1.  To characterize the uncertainty in the 
parameter estimates, the standard errors are also 
shown in Table 1.

Several observations regarding the risk premia in 
the two-factor model can be made from reviewing 
Table 1.  First, the long-term equilibrium drift rate 

FIGURE 3:

Natural gas futures price data

TABLE 1:

Parameter estimates and standard errors

precisely.  This limited observability in the drift rate of the long term equilibrium level has also 
been documented by others, including Schwartz and Smith (2000).  Although the risk neutral long-
term drift rate term 𝜇𝜇𝜉𝜉∗  is more accurately estimated in both data sets, the calculated values for , 
shown in the bottom row of Table 1, cannot be precisely estimated due to the uncertainty in 𝜇𝜇𝜉𝜉. 

 

 
Figure 3 – Natural gas futures price data 

 
 

 1997-2016 Data Set 2009-2016 Data Set 
 Parameter Estimate SE(Est.) Parameter Estimate SE(Est.) 
 -0.0465 0.0519 -0.2060 0.0605 
 0.9451 0.0197 1.3998 0.0270 
 0.4794 0.0480 -0.7452 0.0489 
 0.4961 0.0192 0.3770 0.0201 
 0.2223 0.0058 0.1628 0.0062 
 -0.2534 0.0480 0.3320 0.0672 
 -0.0380 0.0019 0.0159 0.0014 

 -0.0085   -0.2219   
 

Table 1 - Parameter estimates and standard errors 

 

The short term risk premium 𝜆𝜆𝜒𝜒 estimates from both data sets also had relatively high 
standard errors, but the larger issue for this parameter was the variability of the estimates from the 
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two data sets, and apparent sensitivity to the data set time horizon.  Other researchers have noted 
similar issues with estimating this risk premium parameter (see for example [8]).  The implication 
of these issues is that, while it would be possible to parameterize a risk neutral price model, which 
does not depend on the estimated risk premia1, it would not be possible to specify a reliable model 
of the expected spot price without better estimates of 𝜆𝜆𝜒𝜒 and 𝜆𝜆𝜉𝜉. 

To improve the estimates 𝜆𝜆𝜒𝜒 and 𝜆𝜆𝜉𝜉, Cortazar et al. (2015) suggest the use of one or more 
of three different approaches to exogenously estimate these risk premia.  The three approaches are 
1) using capital asset pricing model (CAPM)-like asset pricing model to estimate the risk premia, 
2) setting the risk premia to zero and 3) using expert opinion of the values of the risk premia.  In 
this work, we used the asset pricing model approach, as it is most likely to align with our goal of 
obtaining market valuations. 

The asset pricing model approach is analogous to estimation of  for the capital asset 
pricing model (CAPM) risk premium for a stock. The variable  characterizes if a given asset is 
more or less variable than the market overall. If  <1 the asset price is less volatile, and if  >1 the 
asset price is more volatile. In our case, we analyze seven assets which are the seven different 
maturity futures contracts. The different maturities facilitate estimation of the short and long term 
risk premia.  To calculate the seven beta coefficients, we regressed the weekly returns for each 
futures contract against a market proxy, the Vanguard 500 Index (VFINX).  The beta coefficients 
were then multiplied by the average market premium since 2000 (4%, from Graham and Harvey, 
2012) to produce the expected return for each contract, with the results for both of our data sets 
shown below in Table 2. 

 1997-2016 Data Set 2009-2016 Data Set 
Contract Maturity 

(days)  t-statistic E[RT]  t-statistic E[RT] 
30 0.1277 1.11 0.51% 0.4165 2.32 1.67% 
90 0.1167 1.21 0.47% 0.3696 2.49 1.48% 

180 0.1564 2.14 0.63% 0.2841 2.26 1.14% 
360 0.1272 2.26 0.51% 0.2769 3.07 1.11% 
540 0.1397 2.79 0.56% 0.2149 2.85 0.86% 
720 0.1225 2.61 0.49% 0.2207 3.39 0.88% 

1080 0.1241 2.72 0.50% 0.2234 3.74 0.89% 
 

                                                           
1 It may appear that the risk premia, 𝜆𝜆𝜒𝜒 and 𝜆𝜆𝜉𝜉, are required to parameterize the risk neutral version 
of the two factor model because Equation 8a of Schwartz and Smith (2000) includes both the risk 
neutral drift rate of the equilibrium level, which is connected to the true drift rate of the equilibrium 
level by the long-term risk premium (𝜇𝜇𝜉𝜉

∗ = 𝜇𝜇𝜉𝜉 − 𝜆𝜆𝜉𝜉), as well as the risk premium for the short term 
deviation, 𝜆𝜆𝜒𝜒.  However, neither of the risk premia has any effect in the risk-neutral model.  The 
risk-neutral drift rate for the long term equilibrium level 𝜇𝜇𝜉𝜉

∗ is directly estimated by the Kalman 
Filter, therefore 𝜆𝜆𝜉𝜉 does not directly or indirectly factor into Equation 8a.  While 𝜆𝜆𝜒𝜒 does appear 
in Equation 8a, any changes to it must be accompanied by adjustments to the values of the two 
factors (𝜒𝜒0 and 𝜉𝜉0) and there is no net effect on the risk-neutral distribution of prices.  This 
relationship is discussed in detail in Section 6.1, p. 906 of Schwartz and Smith (2000).   

term µξ  is negative for both data sets, especially for 
the shale gas era data set.  As noted by Schwartz 
and Smith (2000) and others, a negative estimate 
for this drift rate may not be realistic, given that 
even a small inflation rate over the forecast period 
should generate a slightly upward-trending 
forecast.  In addition, the standard errors of these 
estimates are relatively large, indicating that these 
terms were not estimated very precisely.  This 
limited observability in the drift rate of the long 
term equilibrium level has also been documented 
by others, including Schwartz and Smith (2000).  
Although the risk neutral long-term drift rate term 
µ✳

ξ is more accurately estimated in both data sets, 
the calculated values for λξ, shown in the bottom 
row of Table 1, cannot be precisely estimated due to 
the uncertainty in µξ.

The short term risk premium λχ estimates from 
both data sets also had relatively high standard 
errors, but the larger issue for this parameter 
was the variability of the estimates from the two 
data sets, and apparent sensitivity to the data 
set time horizon.  Other researchers have noted 
similar issues with estimating this risk premium 
parameter (see for example [8]).  The implication 
of these issues is that, while it would be possible to 
parameterize a risk neutral price model, which does 

not depend on the estimated risk premia1, it would 
not be possible to specify a reliable model of the 
expected spot price without better estimates of λχ 
and λξ.

To improve the estimates λχ and λξ, Cortazar et 
al. (2015) suggest the use of one or more of three 
different approaches to exogenously estimate these 
risk premia.  The three approaches are 1) using 
capital asset pricing model (CAPM)-like asset 
pricing model to estimate the risk premia, 2) setting 
the risk premia to zero and 3) using expert opinion 
of the values of the risk premia.  In this work, we 
used the asset pricing model approach, as it is most 
likely to align with our goal of obtaining market 
valuations.

The asset pricing model approach is analogous to 
estimation of β for the capital asset pricing model 
(CAPM) risk premium for a stock. The variable β 
characterizes if a given asset is more or less variable 
than the market overall. If β <1 the asset price is 
less volatile, and if β >1 the asset price is more 

1 It may appear that the risk premia, λχ and λξ, are required to 
parameterize the risk neutral version of the two factor model because 
Equation 8a of Schwartz and Smith (2000) includes both the risk neutral 
drift rate of the equilibrium level, which is connected to the true drift 
rate of the equilibrium level by the long-term risk premium (µ✳

ξ = µξ - λξ), 
as well as the risk premium for the short term deviation, λχ.  However, 
neither of the risk premia has any effect in the risk-neutral model.  The 
risk-neutral drift rate for the long term equilibrium level µ✳

ξ  is directly 
estimated by the Kalman Filter, therefore λξ does not directly or indirectly 
factor into Equation 8a.  While λχ does appear in Equation 8a, any 
changes to it must be accompanied by adjustments to the values of 
the two factors (χ0 and ξ0) and there is no net effect on the risk-neutral 
distribution of prices.  This relationship is discussed in detail in Section 
6.1, p. 906 of Schwartz and Smith (2000).  

TABLE 2:

Beta coefficients and asset pricing model expected returns
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volatile. In our case, we analyze seven assets which 
are the seven different maturity futures contracts. 
The different maturities facilitate estimation of the 
short and long term risk premia.  To calculate the 
seven beta coefficients, we regressed the weekly 
returns for each futures contract against a market 
proxy, the Vanguard 500 Index (VFINX).  The beta 
coefficients were then multiplied by the average 
market premium since 2000 (4%, from Graham and 
Harvey, 2012) to produce the expected return for 
each contract, with the results for both of our data 
sets shown in Table 2.

The vectors of expected futures contract returns 
from Table 2 can then be equated with the expected 
contract returns from the Schwartz and Smith 

(2000) model, which was shown by Cortazar et al. 
(2015) to be:

(7)

This yields a system of seven equations with three 
unknowns; κ, λχ and λξ.  We used the κ estimates 
from Table 1 for each data set and solved for the 
risk premia numerically with Excel Solver by 
minimizing the sum of the squared differences 
between the expected futures return for each 
contract in Table 2 and the calculated expected 
returns from Equation (7).  The results of this 

TABLE 3:

Risk premia estimates from the asset pricing model approach

TABLE 4:

Parameter estimates and standard errors for restricted case

Table 2 – Beta coefficients and asset pricing model expected returns 

The vectors of expected futures contract returns from Table 2 can then be equated with the 
expected contract returns from the Schwartz and Smith (2000) model, which was shown by 
Cortazar et al. (2015) to be: 

𝐸𝐸0[𝑟𝑟𝑇𝑇,Δ𝑡𝑡] = 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜆𝜆𝜉𝜉Δ𝑡𝑡 − 𝑒𝑒−𝜅𝜅𝑇𝑇(1 − 𝑒𝑒𝜅𝜅Δ𝑡𝑡) 𝜆𝜆𝜒𝜒𝜅𝜅 ) − 1          (7) 

This yields a system of seven equations with three unknowns; , 𝜆𝜆𝜒𝜒 and 𝜆𝜆𝜉𝜉.  We used the 
estimates from Table 1 for each data set and solved for the risk premia numerically with Excel 
Solver by minimizing the sum of the squared differences between the expected futures return for 
each contract in Table 2 and the calculated expected returns from Equation (7).  The results of this 
analysis are shown below in Table 3, again, for both data sets. Relative to the estimates in Table 
1, these estimates show more reasonable values for the risk premium for the long term equilibrium 
level, and less sensitivity to the data time horizon with the risk premium for the short term 
deviation. 

With the asset pricing model estimates for the risk premia, a restricted case can then be run 
where only the remaining five parameters are estimated by the Kalman filter, and the two risk 
premia are entered as deterministic model inputs. Our results for the restricted case for both data 
set, which are summarized in Table 4, can then be compared against the unrestricted case results 
in Table 1. 

 1997-2016 Data Set 2009-2016 Data Set 
Contract Maturity 

(days) 
APM 
E[RT] 

 Eq. (7) 
Calculated E[RT] SSE 

APM 
E[RT] 

 Eq. (7) 
Calculated E[RT] SSE 

30 0.0051 0.0053 2.72E-08 0.0167 0.0162 1.93E-07 
90 0.0047 0.0053 3.48E-07 0.0148 0.0145 5.59E-08 

180 0.0063 0.0052 1.03E-06 0.0114 0.0127 1.71E-06 
360 0.0051 0.0052 1.64E-08 0.0111 0.0104 4.30E-07 
540 0.0056 0.0052 1.48E-07 0.0086 0.0093 4.98E-07 
720 0.0049 0.0052 8.72E-08 0.0088 0.0087 6.45E-09 

1080 0.0050 0.0052 4.84E-08 0.0089 0.0083 3.60E-07 
   Sum = 1.70E-06   Sum = 3.25E-06 
  0.01%    0.41%   

  0.52%    0.82%   

Table 3 – Risk premia estimates from the asset pricing model approach 

 1997-2016 Data Set 2009-2016 Data Set 
 Parameter Estimate SE(Est.) Parameter Estimate SE(Est.) 
 -0.0372 n/a 0.0228 n/a 
 0.9481 0.0199 1.4010 0.0269 
 0.0001 n/a 0.0041 n/a 
 0.4556 0.0170 0.4139 0.0226 
 0.2318 0.0061 0.1768 0.0075 
 -0.2957 0.0421 0.0890 0.0639 
 -0.0424 0.0020 0.0146 0.0017 

07 08 

180 0.0063 0.0052 
1.03E-

06 0.0114 0.0127 
1.71E-

06 

360 0.0051 0.0052 
1.64E-

08 0.0111 0.0104 
4.30E-

07 

540 0.0056 0.0052 
1.48E-

07 0.0086 0.0093 
4.98E-

07 

720 0.0049 0.0052 
8.72E-

08 0.0088 0.0087 
6.45E-

09 

1080 0.0050 0.0052 
4.84E-

08 0.0089 0.0083 
3.60E-

07 

   Sum = 
1.70E-

06   Sum = 
3.25E-

06 
 λχ 0.01%   λχ 0.41%   

 λξ 0.52%   λξ 0.82%   

Table 3 – Risk premia estimates from the asset pricing model 
approach 

 1997-2016 Data Set 2009-2016 Data Set 

 
Parameter 
Estimate SE(Est.) 

Parameter 
Estimate SE(Est.) 

µ ξ -0.0372 n/a 0.0228 n/a 
κ  0.9481 0.0199 1.4010 0.0269 
λχ 0.0001 n/a 0.0041 n/a 
σχ 0.4556 0.0170 0.4139 0.0226 
σξ 0.2318 0.0061 0.1768 0.0075 
ρξχ -0.2957 0.0421 0.0890 0.0639 

µ ξ
∗ -0.0424 0.0020 0.0146 0.0017 

λχ  =  µ ξ −  µ ξ∗  0.0052   0.0082   

Table 4 - Parameter estimates and standard errors for restricted 
case 
  

Using the parameter estimates in Table 4, we can now develop forecasts 
and confidence envelopes for both the risk neutral price and the expected spot 
price, which are shown graphically in Figures 4 and 5 and numerically in Table 
5.  For both data sets, we can see the effect of the risk premia through the 
slightly lower risk neutral forecasts.  In Figure 4, it is apparent that the long 
term equilibrium level drift in the two factor model is influenced by the by the 
longer term (i.e., back to circa 2000) historical trend from a period of high, and 
occasionally very high, prices (circa 2000 to 2008) to a period of low and 
declining prices (circa 2009 to present). As a result, the expected spot price is 
forecasted to rise to just above $3.00/million Btu during the next two years 

E0[rT ,Δ t] = exp(λξΔt - e-κt(1 - eκΔt)     ) - 1λχ

κ
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analysis are shown below in Table 3, again, for both 
data sets. Relative to the estimates in Table 1, these 
estimates show more reasonable values for the risk 
premium for the long term equilibrium level, and 
less sensitivity to the data time horizon with the 
risk premium for the short term deviation.

With the asset pricing model estimates for the risk 
premia, a restricted case can then be run where 
only the remaining five parameters are estimated 
by the Kalman filter, and the two risk premia are 

entered as deterministic model inputs. Our results 
for the restricted case for both data set, which are 
summarized in Table 4, can then be compared 
against the unrestricted case results in Table 1.

Using the parameter estimates in Table 4, we can 
now develop forecasts and confidence envelopes for 
both the risk neutral price and the expected spot 
price, which are shown graphically in Figures 4 and 
5 and numerically in Table 5.  For both data sets, 
we can see the effect of the risk premia through the 

FIGURE 4:

Natural gas historical and forecasted prices (1996 – 2016 data set)

FIGURE 5:

Natural gas historical and forecasted prices (2009 – 2016 data set)
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slightly lower risk neutral forecasts.  In Figure 4, 
it is apparent that the long term equilibrium level 
drift in the two factor model is influenced by the by 
the longer term (i.e., back to circa 2000) historical 
trend from a period of high, and occasionally very 
high, prices (circa 2000 to 2008) to a period of low 
and declining prices (circa 2009 to present). As a 
result, the expected spot price is forecasted to rise 
to just above $3.00/million Btu during the next 
two years and then stay nearly flat at this level out 
to the end of the forecast horizon.  This may be 
interpreted as a somewhat conservative forecast, 
although it roughly aligns with the High Oil and 
Gas Resource scenario projections from the EIA 
2015 Energy Outlook (Figure 6).  

The forecast in Figure 5, by comparison, is not 
influenced by the memory of high longer term 
historical price levels and downward trend. During 
the period from 2009 through 2014, spot prices 
oscillated around a mean price just under $4/
million Btu, and then prices dropped significantly 
and rapidly in 2015.  As a result, the expected spot 
price is forecasted to recover to about $3.00/million 
Btu over the next two years, but then grow at a 
moderate rate to a price of $4.35/million Btu by the 
end of the forecast horizon.  This forecast is less 
conservative than the forecast in Figure 4, although 
it is still below the Reference case projections from 
the EIA 2015 Energy Outlook in Figure 6 below.  

TABLE 5:

Forecasted natural gas spot prices and confidence envelope

FIGURE 6:

EIA scenarios and projections for Henry Hub natural gas spot prices

Source: EIA Annual Energy Outlook 2015

 
Figure 5 – Natural gas historical and forecasted prices (2009 – 2016 data set) 

 
 1996 - 2016 Data Set 2009 - 2016 Data Set 

  
Spot 
Price Envelope 

Spot 
Price Envelope 

Year St 10th % 90th % St 10th % 90th % 
2016 $2.12      $2.15      
2017 $2.83  1.87 4.30 $2.86  1.92 4.25 
2018 $3.12  1.87 5.19 $3.14  1.97 5.01 
2019 $3.21  1.79 5.76 $3.31  1.97 5.56 
2020 $3.23  1.68 6.20 $3.45  1.96 6.08 
2021 $3.21  1.57 6.58 $3.59  1.95 6.61 
2022 $3.19  1.47 6.92 $3.73  1.95 7.16 
2023 $3.16  1.38 7.24 $3.88  1.95 7.73 
2024 $3.12  1.29 7.55 $4.03  1.95 8.33 
2025 $3.09  1.22 7.84 $4.19  1.96 8.96 
2026 $3.06  1.15 8.13 $4.35  1.97 9.62 

 

Table 5 – Forecasted natural gas spot prices and confidence envelope 

The forecast in Figure 5, by comparison, is not influenced by the memory of high longer 
term historical price levels and downward trend. During the period from 2009 through 2014, spot 
prices oscillated around a mean price just under $4/million Btu, and then prices dropped 
significantly and rapidly in 2015.  As a result, the expected spot price is forecasted to recover to 
about $3.00/million Btu over the next two years, but then grow at a moderate rate to a price of 
$4.35/million Btu by the end of the forecast horizon.  This forecast is less conservative than the 
forecast in Figure 4, although it is still below the Reference case projections from the EIA 2015 
Energy Outlook in Figure 6 below. 
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4 | CONCLUSIONS

In this paper, we used natural gas futures prices in 
a Kalman filter – maximum likelihood estimation 
approach to parameterize the Schwartz and Smith 
(2000) stochastic process model. We find, as have 
other researchers, that the short and long term 
risk premia are not well estimated by the Kalman 
filter approach.   We also find that an asset pricing 
model approach can be used to obtain improved 
estimates of these parameters, and that the Kalman 
filter can be used on a restricted basis to estimate 
the remaining two factor model parameters.  The 
estimates of these remaining parameters and their 
standard errors are not significantly changed in 
the restricted case.  The improved estimation of 
the risk premia allows development of reasonable 
forecasts for both the risk neutral price and the 
expected spot price. 

We applied this approach to parameterize the 
Schwartz and Smith (2000) model using a large 
data set of natural gas futures prices, beginning 
in 1996 when all of our contracts of interest 

began to be continuously traded, as well as a more 
abbreviated data set that is intended to represent 
the shale gas production era, which began to 
impact volumes and prices in the 2009 timeframe.  
We found that the choice of data set has some effect 
on the two factor model parameter estimates and 
the resulting forecast, with the longer term data 
set resulting in a slightly lower forecast due to the 
long term downward trend from the high prices 
realized in the mid- to latter part of the 2000-2010 
decade.  With either data set, however, we obtain 
forecasts that roughly align with the High Oil and 
Gas Resource and Low Oil Price scenarios from the 
2015 EIA Energy Outlook, two outcomes that seem 
increasingly likely as judged by market sentiment.  
This market-based forecasting model provides the 
added benefits of simple updating (as new futures 
data becomes available) and a statistical basis 
for uncertainty analysis, through the confidence 
envelope around the future expected spot prices.  
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