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Three keys to confronting gridlock:
Diplomacy, Technology, and Policy
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How the Keys Interact to
Unlock Climate Gridlock
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Temperatures are nearing
Paris Agreement limits
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cosat(carson Global fossil CO, emissions have been rising relentlessly

PROJECT

Global fossil CO, emissions: 34.8 + 2 GtCO, in 2020, 53% over 1990
Projection for 2021: 36.4 + 2 GtCO,, 4.9% [4.1%—5.7%)] higher than 2020
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The 2021 projection is based on preliminary data and modelling.
Source: Friedlingstein et al 2021; Global Carbon Project 2021
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Global fossil CO, emissions are projected to increase by 4.9% [4.1%-5.7%] in 2021
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Worst-case scenarios avoided,
but not on track for 1.5-2°C
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Net-zero in U.S. isn’t enough

C-ROADS
Base case

C-ROADS
with U.S.
nearing
net-zero
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Need to decarbonize energy affordably, reliably, and fast,
in ways that make it achievable globally

C-ROADS: Climate Interactive hitps://c-roads.climateinteractive.org/
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Still, U.S. is crucial

* Most emissions historically and per-capita
» Largest economy and consumer market

* Leads in technology development

* Leading driver and barrier to diplomacy

* Need to make clean energy cheap here so
It can be deployed elsewhere

— Learning by doing drives down cost and
improves performance

12



The Technology Key

Technolog

13



Energy consumption in the United States (1776-2040)
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Energy transitions historically
have been slow
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Baseline projections expect
fossil fuels to remain dominant

Energy production by source
AEO2022 Reference case
quadrillion British thermal units
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Some technology transitions
have been incredibly fast

)5, HOUSENOLDS CONSUMPTION SPREADS FASTER TODAY
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Outlooks are often wrong!
E.g., overpredicted coal...

US Coal Generation — Actual and EIA Forecasts from 2010-2020
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... And underpredicted renewables

IEA New Solar Additions Per Year
Forecast vs History
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Even optimists failed to
foresee cost declines In solar

Solar Costs Are Decades Ahead of Forecasts

==|EA 2010 Forecast ==|EA 2014 Forecast
==Naam 2011 Forecast ==Naam 2015 Forecast
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Slides from Ramez Naam: https://rameznaam.com/2020/05/14/solars-future-is-insanely-cheap-2020/
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Learning curves: Costs tend to fall

~18%

per doubling in deployment

Solar Prices Decline Smoothly with Industry Doublings
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Slides from Ramez Naam: https://rameznaam.com/2020/05/14/solars-future-is-insanely-cheap-2020/
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Learning curves for the Model T
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Figure 1. The price of the Ford Model T from 1909-1923]2].
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Steps toward decarbonization
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United States Mid-Century Strategy for Deep Decarbonization (White House, Nov. 2016)
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Pillars of clean energy
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28 Quads Total 31 Quads Total 21 Quads Total 18 Quads Total
0 Quads Electricity 10 Quads Electricity 14 Quads Electricity 14 Quads Electricity

Roles for the pillars of 1o
clean energy:

» Efficiency: Shrinks all
boxes

Other
Other

Non-Electricity

Commercial Light Trucks

=
Q
5
Q
@
u
[ 4
Qo
b4

e Clean electricity:
Cleans up area below
the electric frontier

e Electrification: Moves
up the electric frontier

e Other clean fuels:
Decarbonizes above
frontier

e Carbon sinks: Offset the
emissions that remain

Electricity

% of Total 2015 Primary Energy Consumption

NREL Electrification Futures Study



https://www.nrel.gov/docs/fy18osti/71500.pdf

Decarbonizing Electricity: Options
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https://www.nrel.gov/analysis/life-cycle-assessment.html

Wind and solar are least cost

Levelized Cost of Energy Comparison—Unsubsidized Analysis

Selected renewable energy generation technologies are cost-com petitive with conventional generation technologies under certain circumstances

Note:

Conventional

Solar PV-Roofop Residenial s |
Solar PV-Community sso [ s>

= i i ) ;
Renewable Solar PV-Cry stalline Utility Scale $30 - $41
Setey Solar PV~Thin Film Utiity Scale s2s [ s+
Solar Thermal Tower with
Geothermal $56 $93

Wind s2 [ s> ®5830

Gas Peaking® $151 _ $196
Nudlear® @ 5296 si3 [

e o I - New

Gas Combined Cycle @ $246) @ $45 - $74 € $890) @ $1296)

$0 $25 $50 $75 $100 $125 $150 $175 $200 $225 $250 $275
Levelized Cost ($/MWh)

Here and throughout this presentation, unless otherwise indicated, the analysis assumes 60% debt at 8% interest rate and 40% equity at 12% cost. Please see page titled “Lewelized Cost of Energy Comparison—Sensitivity to Cost of Capital” for cost of capital
sensitivities. These results are not intended to represent any particular geography. Please see page titled “Solar PV versus Gas Peaking and Wind versus CCGT—Global Markets” for regional sensitivities to selected technologies.

Unless otherwise indicated herein, the low case represents a single-axis tracking system and the high case represents a fixed-tilt system.

Represents the estimated implied midpoint of the LCOE of offshore wind, assuming a capital cost range of approximately $2,500 — $3,600/KWV.

The fuel cost assumption for Lazard's global, unsubsidized analysis for gas-fired generation resources is $3.45/MMBTU.

Unless otherwise indicated, the analysis herein does not reflect decommissioning costs, ongoing maintenance-related capital expenditures or the potential economic impacts of federal loan guarantees or other subsidies.

Represents the midpoint of the marginal cost of operating fully depreciated gas combined cycle, coal and nuclear facilities, inclusive of decommissioning costs for nuclear facilities. Analysis assumes that the salvage value for a decommissioned gas combined
cycle or coal asset is equivalent to its decommissioning and site restoration costs. Inputs are derived from a benchmark of operating gas combined cycle, coal and nuclear assets across the U.S. Capacity factors, fuel, variable and fixed operating expenses are
based on upper- and lower-quartile estimates derived from Lazard's research. Please see page titled “Lewelized Cost of Energy Comparison—Renewable Energy versus Marginal Cost of Selected Existing Conventional Generation” for additional details.

High end incorporates 90% carbon capture and storage. Does not include cost of transportation and storage.

Represents the LCOE of the observed high case gas combined cycle inputs using a 20% blend of “Blue” hydrogen, (i.e., hydrogen produced from a steam-methane reformer, using natural gas as a feedstock and sequestering the resulting CO; in a nearby saline
aquifer). No plant modifications are assumed beyond a 2% adjustment to the plant's heat rate. The corresponding fuel cost is $5.200MMBTU, assuming $1.39/kg for Blue hydrogen.

Represents the LCOE of the observed high case gas combined cycle inputs using a 20% blend of “Green” hydrogen, (i.e., hydrogen produced from an electrolyzer powered by a mix of wind and solar generation and stored in a nearby salt cavern). No plant
modifications are assumed beyond a 2% adjustment to the plant's heat rate. The corresponding fuel cost is $10.05/MMBTU, assuming $4.15/kg for Green hydrogen.

Source: Lazard estimates.

Lazard 2021, Unsubsidized levelized cost of electricity

25


https://www.lazard.com/perspective/levelized-cost-of-energy-levelized-cost-of-storage-and-levelized-cost-of-hydrogen/

Wind costs have fallen 72%,
and solar 90% since 2009

Levelized Cost of Energy Comparison—Historical Renewable Energy LCOE Declines

In light of material declines in the pricing of system components and improvements in efficiency, among other factors, wind and utility-scale solar
PV have exhibited dramatic LCOE declines; however, as these industries have matured, the rates of decline have diminished

Unsubsidized Wind LCOE Unsubsidized Solar PV LCOE
LCOE . (729 LCOE Utility-Scale Solar2009—-2021 Percentage Decrease: (90
Wind 2009 - 2021 Percentage Decrease: (72%)") y->cale g
S/MWh) | @ g il @ ($/MWh) | |
$250 R . Wind 2009 - 2021 CAGR: (10%){2) . $450 ~ ‘ Utlllty-ScaIe Solar2009-2021 CAGR:
Wind 2016 — 2021 CAGR: (4%)? $394 Utility-Scale Solar2016-2021 CAGR: (¢
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. $56 $54 §54 g5 100 | . $86 570
0 . m ]E[ I { I $101 g9 3 %01 $53 g46
$50 $48 «. + 1 1L | T°°71- $44 $42 341
348 945 == 50 - $72 b : e
$32 $32 $30 $29 $49 1
$28 $26 $26 , $46 340 $36 331 $30
0 . ' : . . . ; ; : | ' : . T T T T T T T T T T T T ,
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
LCOE LCOE
Version 3-0 40 50 6.0 7.0 80 9.0 10.0 11.0 12.0 13.0 14.0 15.0 Version 30 40 50 6.0 7.0 80 9.0 10.0 11.0 12.0 13.0 14.0 15.0
— = = Wind LCOE Mean Crystalline Utility-Scale Solar LCOE Mean
Wind LCOE Range Crystalline Utility-Scale Solar LCOE Range

Source: Lazard estimates.
1 Represents the average percentage decrease of the high end and low end of the LCOE range.
(2) Represents the average compounded annual rate of decline of the high end and low end of the LCOE range.

Lazard 2021, Unsubsidized levelized cost of electricity
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Wind and solar costs down,
nuclear and coal up since 2009

Levelized Cost of Energy Comparison—Historical Utility-Scale Generation
Comparison

Lazard’s unsubsidized LCOE analysis indicates significant historical cost declines for utility-scale renewable energy generation technologies
driven by, among other factors, decreasing capital costs, improving technologies and increased competition
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Lazard 2020: https://www.lazard.com/media/451419/lazards-levelized-cost-of-energy-version-140.pdf



https://www.lazard.com/media/451419/lazards-levelized-cost-of-energy-version-140.pdf

Lithium-ion battery costs

Battery pack price (real 2020 $/kWh)
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Note: Pack price across passenger EVs, e-buses, commercial EVs and stationary storage. in EVs, the pack consists of cells, BI b N EF
moaule housing, battery management system (BMS), wiring, pack housing and thermal management system. For stationary oombe rg

storage, we consider the equivalent to be the battery rack.

BNEF 2021: 28
https://about.bnef.com/blog/battery-pack-prices-fall-to-an-average-of-1
32-kwh-but-rising-commodity-prices-start-to-bite/



https://about.bnef.com/blog/battery-pack-prices-fall-to-an-average-of-132-kwh-but-rising-commodity-prices-start-to-bite/
https://about.bnef.com/blog/battery-pack-prices-fall-to-an-average-of-132-kwh-but-rising-commodity-prices-start-to-bite/

2014: Renewables, nuclear, and carbon
capture pathways all seemed plausible

Figure 29. 2050 Electric Generation by Resource Type
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https://usddpp.org/downloads/2014-technical-report.pdf

2020: Solar and wind lead in all

Solar and wind generated electricity have dominant roles in all

net-zero pathways

net-zero pathways

p—

16,000
15,000
14,000
13,000
12,000
11,000
10,000
9,000
8,000
7,000
6,000

5,000

Annual Generation (TWh)

4,000

3,000

2,000

1,000

o

REF E+ E- E- B+ E+ RE- E+ RE+

offshore wind
onshore wind
solar pv

M geothermal

M hydro
nuclear

W gas
gas w cc

W coal

M biomass
biomass w cc

offshore wind

onshore wind

[~

: ) - ) ; - , v -t v ' e ! . - ; ) .
020 2030 2040 20502020 2030 2040 20502020 2030 2040 20502020 2030 2040 20502020 2030 2040 20502020 2030 2040 2050

+ Share of electricity

from carbon-free
sources roughly
doubles from ~37%
today to 70-85% by
2030 and reaches 98-
100% by 2050.

Wind + solar grows
>4x by 2030 to supply
~Y2 of U.S. electricity
in all cases except
E+RE-; in that case,
growth is constrained,
but still triples by
2030 to supply /3 of
electricity.

By 2050, wind and
solar supply ~85-90%
of generation in E+,
E-, and E-B+. In
E+RE-, 44%; in
E+RE+, 98%.

RETURN TO
TABLE OF
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Princeton, net-zero pathways: https://environmenthalfcentury.princeton.edu/sites/a/files/torugf331/files/2020-12/Princeton_NZA_Interim_Report_15_Dec_2020_FINAL.pdf



https://environmenthalfcentury.princeton.edu/sites/g/files/toruqf331/files/2020-12/Princeton_NZA_Interim_Report_15_Dec_2020_FINAL.pdf

Land Use for Solar, Wind, and
Biomass in net-zero scenarios

Total land area/visual footprint in 2050 for solar, wind, and
biomass across scenarios is 0.25 to 1.1 million km?2.

Equivalent land area for
[0 Solar farms

[0 Wind farms

[ Biomass farms®

[ Direct air capture

U.S. land use today, Lower-48
(7.7 Million km?)

Note: Directly impacted land area for wind farms
(equipment footprint) is indicated by ®. For
solar and biomass, directly impacted areas are
92% and 100% of shaded area shown.

Note: In these maps, the sum of land K‘\,
areas of colored states is roughly the H

same as the area nationally of the
indicated uses.
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RETURN TO TABLE OF CONTENTS * On lands converted from food production.
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Princeton, net-zero pathways: https:/environmenthalfcentury.princeton.edu/sites/g/files/torugf331/files/2020-12/Princeton_NZA_Interim_Report_15_Dec_2020_FINAL.pdf



https://environmenthalfcentury.princeton.edu/sites/g/files/toruqf331/files/2020-12/Princeton_NZA_Interim_Report_15_Dec_2020_FINAL.pdf

Emerging option:
Enhanced geothermal

Heated fluids are recovered at
the surface for energy production

Power Plant

Production
Well

Heated fluid is
produced back

/ to the surface

Figure 2-6. Conceptualization of an enhanced geothermal system
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CLIMATE CHANGE

What it will take to unleash the potential of

geothermal power

Four new pilot plants funded by the US infrastructure bill could help expand the
range of the “forgotten renewable.”

Deep Energy and Eavor forms partnership to deploy
closed-loop geothermal technology

Criterion Energy Partners secures strategic investment
for geothermal project



Electrification:
Shifting the electric frontier
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e Clean electricity:
Cleans up area below
the electric frontier

e Electrification: Moves
up the electric frontier

e Other clean fuels:
Decarbonizes above
frontier

e Carbon sinks: Offset the
emissions that remain

Electricity

% of Total 2015 Primary Energy Consumption

NREL Electrification Futures Study



https://www.nrel.gov/docs/fy18osti/71500.pdf

How homes are heated in U.S.

Mostly
electricity
in the
South
(~60%
electric in
Texas)

Mostly
natural gas
in Midwest

Figure 4. Natural gas is the most-used heating fuel in heated homes in three of four cia
Census regions
main space heating fuel by Census region
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EIA 2015 Residential Energy Consumption Survey



https://www.eia.gov/consumption/residential/reports/2015/overview/index.php?src=%E2%80%B9%20Consumption%20%20%20%20%20%20Residential%20Energy%20Consumption%20Survey%20(RECS)-f3

Transition to electric heat pumps in
most net-zero strategies
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America’s Zero Carbon Action Plan: hitps://www.unsdsn.org/Zero-Carbon-Action-Plan



https://www.unsdsn.org/Zero-Carbon-Action-Plan

Policies can create virtuous cycle of
technology learning curves

TProduction [1|Cost [ 1Production [ ....

* “Technology push” policies: RD&D lowers
cost of a technology (| Cost)

“Market pull” policies: Create demand for a
product (1Production)

— Procurement: e.g., Government fleet

— Incentives: e.q., electric car tax credits

— Mandates: e.g., California new home solar

— Emissions taxes
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Take-home messages

* Decarbonizing the U.S. is necessary but
not sufficient for decarbonization globally

 Efficiency, clean electricity, and
electrification are pillars of clean energy

» Solar, wind, EVs, and heat pumps likely to
lead the way

* Need to create virtuous cycles of learning
by doing to drive technologies forward
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