

Team - License to Drill (John Shaddix, Chris Wolf, Ben Beyer, Jake Stroud, Sudamsh Reddy)

UT Energy Symposium

February 16, 2012

Table of Contents

- 1 Case Overview
- 2 Valuation methods
- **3 Project Valuation**

Case Overview

Case Overview

Project Location

• Time line:

- ▶ 1985 Retter started an exploration program in Fruktania
- ▶ 1994 Oil discovered by Retter
- 1996 Civil war in Fruktania, Retter to declare force majeure and evacuate all expatriate staff

Project History

► 2010 – End of civil war but fragile government

Case objective

- Data given:
 - Expected exploration and production costs with time
 - Expected production of oil and gas with time
- Objective
 - What is the NPV of this project?

Valuation methods

Project valuation methodologies

Method 1	Using most likely values for production volumes, oil prices and capital and operating expenses
Deterministic NPV model using	 Use a higher discount factor to take into account the impact of expropriation
expected values	 It is simple to calculate but not very insightful

Method 2 Monte Carlo Simulation on production and costs	 Use distributions to capture the uncertainty in production volumes, oil prices and capital and operating expenses 		
	 Use a higher discount factor to take into account the impact of expropriation 		
	 Does not take into account the extreme cases of expropriation 		
Step 3	 Use distributions to capture the uncertainty in production volumes, oil prices and capital and operating expenses 		
Monte Carlo with Embed Force	 Include Force Majeure Risk: Probability of a pre-mature termination of project because of expropriation / political instability 		
	Better model to capture the risk involved		

Valuation methods

Method 1: Deterministic NPV

Forecast Assumptions

- Use most likely values for
- •Future oil production
- •Future crude oil price
- •Future operating expense
- •Future capital expense

	2011E	2012E	2013E	2014E	2015E
Total Production (MMBbls)	67	68	68	68	65
Crude Oil (\$/Bbl)	\$83.81	\$85.07	\$86.43	\$87.89	\$89.44
Gross Revenue	\$5,598	\$5,775	\$5,868	\$5,967	\$5,778
Less: Royalty	(1,400)	(1,444)	(1,467)	(1,492)	(1,444)
Net Revenue	\$4,199	\$4,331	\$4,401	\$4,475	\$4,333
Less: Operating Costs	(349)	(359)	(366)	(374)	(372)
Less: Depreciation	(1,703)	(1,788)	(1,838)	(1,880)	(1,826)
EBIT	\$2,146	\$2,185	\$2,197	\$2,221	\$2,135
Less: Taxes	(966)	(983)	(989)	(1,000)	(961)
Un-levered Net Income	\$1,180	\$1,201	\$1,208	\$1,222	\$1,175
Plus: Depreciation	1,703	1,788	1,838	1,880	1,826
Less: CAPEX	(400)	(800)	(720)	(640)	(480)
Change in NWC	-	-	-	-	-
Free Cash Flow	\$1,303	\$988	\$1,118	\$1,240	\$1,346
Discount Factor	0.909	0.826	0.751	0.683	0.621

NPV \$33.8

Valuation Model

Valuation methods

Method 2: Monte Carlo simulation for NPV

Forecast Assumptions

Use distribution values for

- •Future oil production
- •Future crude oil price
- •Future operating expense
- •Future capital expense

Run iterations and get NPV distribution instead of a single NPV value

Output NPV distribution

Valuation methods

Method 3: Monte Carlo simulation with Force Majeure risk for NPV

Forecast Assumptions

Use distribution values for

- •Future oil production
- •Future crude oil price
- •Future operating expense
- •Future capital expense
- •Probability of Force Majeure

Run iterations and get NPV distribution instead of a single NPV value

Output NPV distribution

	Y1	Y2	Y3	¥4	Y5
Risk of expropriation	5%	5%	4%	4%	3%
Senario 1	1	1	-	-	-
Senario 2	1	1	1	1	1
Senario 3	1	1	1	1	_

Project Valuation

Risk-Adjusted Cash Flows Approach

Step 1 Construct Basic Operating Model	 Flexible operating model to capture project fundamentals and discrete effects of relevant variables Free cash flows evaluated deterministically for reasonableness
Step 2	 Commodity price risk → Mean reverting Brent crude price forecast
Monte Carlo Simulation	 Production uncertainty → +/- % Via distribution of outcomes
	 Capital cost uncertainty → +/- % Via distribution of outcomes
04	Force Majeure Risk: Probability of a pre-mature termination of project
Step 3	Annual schedule for percent (%) probability of early termination
Embed Force Majeure Risk	 Probability highest in 2012, declines to steady-state for life of project

Oil Price Sensitivity

Mean Reverting Price Forecast

Captures Commodity Price Volatility and Market Forces

Forecast Assumptions

Long Run Price - \$80/Bbl

•Annual historical data produced \$75/Bbl

•Recent macro forces indicate future LRP of \$80/Bbl

•Price escalation at 2%

Historical Volatility

•\$15.70 (18%) according to annual historical data

Mean Reversion Speed

•0.20 according to annual historical data

Oil Price Trend

Oil Price Sensitivity

Mean Reverting Price Forecast

Captures Commodity Price Volatility and Market Forces

Forecast Assumptions

Long Run Price - \$80/Bbl

Annual historical data produced \$75/BblRecent macro forces

indicate future LRP of \$80/Bbl

•Price escalation at 2%

Historical Volatility

•\$15.70 (18%) according to annual historical data

Mean Reversion Speed

•0.20 according to annual historical data

10

Project Valuation

Risk-Adjusted Cash Flows Approach

NPV and IRR	\$1,659 MM / 17%	\$837 MM / 15%
Social Investment Program	Fruktania Proposal	Fruktania Proposal

Project Valuation

(\$ MM USD)

Negative Impact of Expropriation Risk on Base Case Valuation

Assumptions

2014+: 2%

Social Investment:

2011- 2015: \$25 MM

2016 – 2034: \$5 MM

Retter Corp. lacks control of fund distribution

NPV Impact

1	Base Case	\$1,659	
2	R.A. Base Case	\$837	
	NPV Change	(\$822)	

Project Lifetime Force Majeure Probability

1	Base Case	0%
2	R.A. Base Case	43%

Project valuation must account for substantial geopolitical risk -

Retter Social Investment Program can mitigate risk of force majeure

Project Valuation

Sensitivity Analysis

Base Case

Value Drivers for Project Economics

- Includes Fruktania proposal for social investment
- Does not incorporate Force Majeure Risk

Key Results

- Breakeven Crude Oil Price: \$75/Bbl → 15% IRR
- Project Delay Effect: 1 Yr. Delay → NPV decrease \$201MM

Price and production uncertainties have tremendous impact on project value

Conclusion

Key takeaways

Oil price forecasting - Mean reverting model

Expropriation risk – Probability distribution in Monte Carlo simulation

Sensitivity analysis to identify key variables and reduce their uncertanity

Thank You